Actualización Sobre los Mecanismos Genéticos y Epigenéticos en el Origen de los Defectos Congénitos Sensibles a la Deficiencia Materna de Ácido Fólico

Autores/as

  • Noel Taboada Lugo Centro Provincial de Genética Médica de Villa Clara
  • Manuela Herrera Martínez Universidad de Ciencias Médicas de Villa Clara. Cuba

DOI:

https://doi.org/10.52428/20756208.v13i36.476

Palabras clave:

Defectos congenitos, Genes, Epigenetica, Acido Folico

Resumen

Los defectos congénitos constituyen la primera causa de muerte infantil en los países desarrollados y la segunda en muchos países en vías de desarrollo. El estudio de los mecanismos genéticos que están involucrados en el origen de muchos defectos congénitos ha tenido un aumento vertiginoso, así como el de los diferentes mecanismos epigenéticos relacionados con la deficiencia materna de ácido fólico. Se realizó una revisión bibliográfica actualizada con el objetivo de proveer información actualizada sobre los mecanismos genéticos y epigenéticos involucrados en el origen de diferentes defectos congénitos relacionados con la deficiencia materna de ácido fólico. La literatura médica publicada en idiomas español e inglés se recopiló a través de buscadores como PubMed, Medline, Scielo, Lilacs y la biblioteca Cochrane en septiembre de 2018 usando palabras clave apropiadas. El hecho de que las alteraciones epigenéticas, en contraste con los mecanismos genéticos como las mutaciones, son potencialmente reversibles, tiene importantes implicaciones para la implementación de estrategias para la prevención de diferentes defectos congénitos sensibles a la deficiencia materna de ácido fólico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

l. OMS. Anomalías congénitas. 2015 [internet]. [citado 23 Sept 2018] URL disponible en: http://www.who.int/mediacentre/factsheets/fs370/es/

2. PORRAS HGL, LEÓN COM, MOLANO HJ, QUINCENO SL, PACHAJOA H, MONTOYA JJ. Prevalencia de defectos congénitos en Risaralda, 2010-2013. Biomédica [internet]. 2016 36:556-63. [citado 23Sept 2018] URL disponible en: http://dx.doi.org/l0.7705/biomedica.v36i4.277l

3. KHOKHA MK, MITCHELL LE, WALUNGFORD J. An opportunity to address the genetic causes of birth defects. Ped Res 2017; [internet]. 81(2):282-285.[citado 23 Sept 2018]URL disponible en: https://www.nature.com/artic1es/pr2016229.pdf https://doi.org/10.1038/pr.2016.229

4. LANTIGUA CA. Introducción a la Genética Médica. La Habana: Editorial Ciencias Médicas; 2da Ed. 2011.p.401

5. GHE cause categories and ICD-10 codes. In: WHO methods and data sources far country level causes of death 2000-2015. 2017; [internet]. [citado 23 Sept 2018]URL disponible en: http://www.who.int/gho/mortality_burden_disease/en/index.html

6. TABOADA LUGO N. Papel del ácido fálico, zinc y cobre en la prevención primaria de los defectos congénitos. Rev cubana Med Gen lnteg [internet]. 2016; 35 (4). [citado 23 Sept2018]URL disponible en: http://www.revmgi.sld.cu/index.php/mgi/article/view/167

7. JUSTO SO, FERREIRO RA, LLAMOS PA, RODRÍGUEZlY, RIZO LO, YASELL RM, ET AL. Comportamiento clínico epidemiológico de los defectos congénitos en La Habana. Rev Cubana Ped [internet]. 2016; 88(1):34-42 [citado 23 Sept 2018] URL disponible en: http://scielo.sld.cu/pdf/ped/v88nl/ped05116.pdf

8. CRUZ QFP, BENÍTEZ CY, MARCHECO TB. Comportamiento clinico epidemiológico de las anomalías congénitas mayores más frecuentes en Cuba 2010-2016. [Internet] 2017[citado 23 Sept 2018] URL disponible en: http://www.geneticacomunitaria20l7.sld.cu/index.php/gencom/2017/paper/view/426/0

9. BANDYOPADHYAY NEOGI S, SINGH S, RAJ PALLEPOGULA D, PANT H, REDDY KOLLI S, BHARTI P, ET AL. Risk factors far orofacial clefts in India: A case-control study Birth Def Res [internet]. 2017; 109: 1284-1291. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bd r2.1073 https://doi.org/10.1002/bdr2.1073

10. SAUNAS TVM, SALINAS TRA, CERDA FRM, MARTÍNEZ VLE. Prevalence, mortality, and spatial distribution of gastroschisis in Mexico. J Pediatr Adolesc Gyneco! [internet]. 2018; [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29317257

11. MARTÍNEZ LG, BLANCO PME, RODRÍGUEZ AY, ENRÍQUEZ DL, MARRERO DI. De la embriogénesis a la prevención de cardiopatías congénitas, defectos del tubo neura! y de pared abdominal. Rev Med Elect [internet]. 2016; 38(2). [citado 23 Sept 2018]URL disponible en: http://scielo.sld.cu/pdf/rme/v38n2/rme 120216.pdf

12. FENG Y, WANG S, CHAEN R, TONG X, WU Z, MO X. Maternal folie acid supplementation and the risk of congenital heart defects in offspring: A meta-analysis of epidemiological observational studies. Sci Rep (Internet]. 2015;5, 8506; [citado 23 Sept 2018] URL disponible en: https://www.nature.com/articles/srep08506.pdf https://doi.org/10.1038/srep08506

13. TABOADA LN, HERRERA MM. Mecanismos epi genéticos y vía de señalización Notch en el origen de diferentes defectos congénitos. Rev Medicentro Elec [internet]. 2018; 22(3) [citado 23 Sept 2018] URL disponible en: http://www.medicentro.sld.cu/index.php/medicentro/article/view/2645/2212

14. LIAD YP, ZHANG D, ZHOU W, MENG FM, BAO MS, XIANG P, LIU CQ. Combined folate gene MTHFD and TC po!ymorphisms as maternal risk factors far Down syndrome in China. Genet Mol Res [internet]. 2014; 13(1):1764-73. [citado 23 Sept 2018] URL disponible en: https://www.geneticsmr.com/sites/defauIt/fiIes/artieles/year2O14/vo113-1/pdf/gmr2725.pdf https://doi.org/10.4238/2014.March.17.4

15. MARTÍNEZ GARCÍA RM, JIMÉNEZ ORTEGA Al, NAVIA LOMBÁN B. Suplementos en gestación: últimas recomendaciones. Nutr Hosp [internet]. 2016; 33 {Supl. 4): 3-7. [citado 23 Sept 2018] URL dispon ib le en: http://scielo.isciii.es/pdf/n h/v33s4/0l_origina l.pdf

16. YANG W, CARMICHAELSL, SHAW GM. Folie acid fortification and prevalences of Neural Tube Defects, Orofacia! Clefts, and Gastroschisis in California, 1989 to 2010. [internet]. 2016;106, 12: 1032- 1041. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bdra.23514 https://doi.org/10.1002/bdra.23514

17. NICHOLAS DE. Neural Tube Defects. An Rev Neurosc [internet]. 2014; 37: 221-242. [citado 23 Sept 2018]URL disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurevneuro-062012-170354 https://doi.org/10.1146/annurev-neuro-062012-170354

18. TABOADA LUGO N, HERRERA MART[NEZ M, HERNÁNDEZ ALAGORA AE, NOCHE GONZÁLEZ G, NOA MACHADO MD. Conglomerados espacio-temporales de defectos del tubo neural y niveles maternos de alfafetoproteína en Villa Clara (2011-2015). Rev cubana Obst Ginecol [internet]. 2016; 42(4). [citado 23 Sept 2018]URL disponible en: http://revginecobstetricia.sld.cu/index.php/gin/article/view/110

19. ARTH A, KANCHERLA V, PACHON H, ZIMMERMAN S, JHONSON Q, OAKLEY GP. A 2015 global update on folie acid-preventable spina bífida and anencephaly. Birth Defects Research (Part A) [internet]. 2016; 106:520-529 [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bd ra.23529 https://doi.org/10.1002/bdra.23529

20. ZAGANJOR 1, SEKKARIE A, TSANG BL, WILLIAMS J, RAZZAGHI H, MU LINAR E J, SNIEZEK JE, CAN NON MJ, ROSENTHAL J. Describing the prevalence of Neural Tube Defects worldwide: A systematic literature review. PloS one [internet]. 2016; 11(4 [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27064786 https://doi.org/10.1371/journal.pone.0151586

21. BA G, JUN WQ, UNG CY, HONG HY, TING GT. Prevalence and time trends of spina bifida in fourteen cities located in the Liaoning province of northeast China, 2006-2015. Oncotarget [internet]. 2017; 8(12): 18943-18948. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386660/ https://doi.org/10.18632/oncotarget.14848

22. KHOSHNOOD B, HERMIEN DE WALLE ML, ARRIOLA L, ADDOR MC, BARISIC 1, BERES J, ET AL. Longterm trends in prevalence of neural tube defects in Europe: population based study. BMJ [internet]. 2015; 351:1-6 [citado 23 Sept 2018] URL disponible en: https://www.bmj.com/content/bmj/351/bmj. h5949.full.pdf https://doi.org/10.1136/bmj.h5949

23. MARTÍN-SU BEROJ 1,51 EBERR. Epigenéticayepigenóm ica. BolCient lnf.Acad mexicana Ped. [internet]. 2016; 1:261-277. [citado 23 Sept 2018] URL disponible en: www.academiamexicanadepediatria.com

24. LEUNG KY, PAi YJ, CHEN Q, SANTOS C, CALVANI E, SUDIWALA S, ET AL. Partitioning of one-carbon units in folate and methionine metabolism is essential for neural tube closure. Cell Reports [internet]. 2017; 21: 1795-1808. [citado 23 Sept 2018] URL disponible en: https://doi.org/10.1016/j.celrep.2017 .10.072 https://doi.org/10.1016/j.celrep.2017.10.072

25. MORALES MA, MÉNDEZ K, SOLÍS E, BORJAS BL, BRACHO A, HERNÁNDEZ ML, ET AL. C677T polymorphism of the methylentetrahydrofolate reductase gene in mothers of children affected with neural tube defects. tnvest Clin [internet]. 2015; 56(3):284-95. [citado 26 Feb 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26710543

26. PANGILINAN F, MOLLOYAM, MILLSJL, TROENDLEJF, MCDERMOTT AP, SIGNORE C, ETAL. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC Medica[ Genetics [en línea] 2012; 13:62. [citado 23 Sept 2018] URL disponible en: http://www.biomedcentral.com/1471-2350/13/62 https://doi.org/10.1186/1471-2350-13-62

Descargas

Publicado

2019-08-30

Cómo citar

Taboada Lugo , N., & Herrera Martínez , M. (2019). Actualización Sobre los Mecanismos Genéticos y Epigenéticos en el Origen de los Defectos Congénitos Sensibles a la Deficiencia Materna de Ácido Fólico. Revista De investigación E información En Salud, 13(36), 64–82. https://doi.org/10.52428/20756208.v13i36.476

Número

Sección

Artículos Originales

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.