Actualización sobre los mecanismos genéticos y epigenéticos en el origen de los defectos congénitos sensibles a la deficiencia materna de ácido fólico

Autores/as

  • Noel Taboada Lugo
  • Manuela Herrera Martínez

DOI:

https://doi.org/10.52428/20756208.v13i36.476

Palabras clave:

Defectos congenitos, Genes, Epigenetica, Acido Folico

Resumen

Los defectos congénitos constituyen la primera causa de muerte infantil en los países desarrollados y la segunda en muchos países en vías de desarrollo. El estudio de los mecanismos genéticos que están involucrados en el origen de muchos defectos congénitos ha tenido un aumento vertiginoso, así como el de los diferentes mecanismos epigenéticos relacionados con la deficiencia materna de ácido fólico. Se realizó una revisión bibliográfica actualizada con el objetivo de proveer información actualizada sobre los mecanismos genéticos y epigenéticos involucrados en el origen de diferentes defectos congénitos relacionados con la deficiencia materna de ácido fólico. La literatura médica publicada en idiomas español e inglés se recopiló a través de buscadores como PubMed, Medline, Scielo, Lilacs y la biblioteca Cochrane en septiembre de 2018 usando palabras clave apropiadas. El hecho de que las alteraciones epigenéticas, en contraste con los mecanismos genéticos como las mutaciones, son potencialmente reversibles, tiene importantes implicaciones para la implementación de estrategias para la prevención de diferentes defectos congénitos sensibles a la deficiencia materna de ácido fólico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

OMS. Anomalias congénitas. 2015 [internet]. [citado 23 Sept 2018] URL disponible en: http://www. who.int/mediacentre/factsheets/fs370/es/

PORRAS HGL, LEÖN COM, MOLANO HJ, QUINCENO SL, PACHAJOA H, MONTOYA JJ. Prevalencia de defectos congénitos en Risaralda, 2010-2013. Biomédica [internet]. 2016; 36:556-63. [citado 23Sept 2018] URL disponible en: http://dx.doi.org/10.7705/biomedica.v36i4.2771

KHOKHA MK, MITCHELL LE, WALLINGFORD J. An opportunity to address the genetic causes of birth defects. Ped Res 2017; [internet]. 81(2):282-285.[citado 23 Sept 2018]URL disponible en: https:// www.nature.com/articles/pr2016229.pdf

LANTIGUA CA. Introducciön a la Genética Médica. La Habana: Editorial Ciencias Médicas; 2da Ed.

p.401

GHE cause categories and ICD-IO codes. In: WHO methods and data sources for country level causes of death 2000-2015. 2017; [internet]. [citado 23 Sept 2018]URL disponible en: http://www. who.int/gho/mortality_burden_disease/en/index.html

TABOADA LUGO N. Papel del åcido f61ico, zinc y cobre en la prevenci6n primaria de los defectos congénitos. Rev cubana Med Gen Integ [internet]. 2016; 35 (4). [citado 23 Sept 2018] URL disponible en: http://www.revmgi.sld.cu/index.php/mgi/article/view/167

JUSTO SD, FERREIRO RA, LLAMOS PA, RODRIGUEZ TY, RIZO LD, YASELL RM, ET AL. Comportamiento clinico epidemiolögico de los defectos congénitos en La Habana. Rev Cubana Ped [internet]. 2016; 88(1):34-42 [citado 23 Sept 2018] URL disponible en: http://scielo.sld.cu/pdf/ped/v88n1/ ped05116.pdf

CRUZ QFP, BENITEZ CY, MARCHECO T B. Comportamiento clinico epidemiolögico de las anomalias congénitas mayores mås frecuentes en Cuba 2010-2016. [Internet] 2017; [citado 23 Sept 2018] URL disponible en: http://www.geneticacomunitaria2017.sld.cu/index.php/gencom/2017/paper/ view/426/0

BANDYOPADHYAY NEOGI S, SINGH S, RAJ PALLEPOGULA D, PANT H, REDDY KOLLI S, BHARTI P, ET AL. Risk factors for orofacial clefts in India: A case-control study Birth Def Res [internet]. 2017; 109: 1284-1291. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/ pdf/10.1002/bdr2.1073

SALINAS TVM, SALINAS TRA, CERDA FRM, MARTINEZ VLE. Prevalence, mortality, and spatial distribution of gastroschisis in Mexico. J Pediatr Adolesc Gynecol [internet]. 2018; [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29317257

MARTINEZ LG, BLANCO PME, RODRIGUEZ AY, ENRIQUEZ DL, MARRERO DI. De la embriogénesis a la prevenciön de cardiopatias congénitas, defectos del tubo neural y de pared abdominal. Rev Med Elect [internet]. 2016; 38(2). [citado 23 Sept 2018] URL disponible en: http://scielo.sld.cu/pdf/rme/ v38n2/rme120216.pdf

FENG Y, WANG S, CHAEN R, TONG X, WU Z, MO X. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: A meta-analysis of epidemiological observational studies. Sci Rep [internet]. 2015;5, 8506; [citado 23 Sept 2018] URL disponible en: https://www.nature. com/articles/srep08506.pdf

TABOADA LN, HERRERA MM. Mecanismos epigenéticos y via de sefializaciön Notch en el origen de diferentes defectos congénitos. Rev Medicentro Elec [internet]. 2018; 22(3) [citado 23 Sept 2018] URL disponible en: http://www.med i centro.sld .cu/index.ph p/ medicentro/a rticle/view/2645/2212

LIAO YP, ZHANG D, ZHOU W, ME-NG FM, BAO MS, XIANG P, LIU CQ. Combined folate gene MTHFD and TC polymorphisms as maternal risk factors for Down syndrome in China. Genet Mol Res [internet]. 2014; 13(1):1764-73. [citado 23 Sept 2018] URL disponible en: https://www.geneticsmr.com/sites/ default/files/articles/year2014/v0113-1/pdf/gmr2725.pdf

MARTINEZ GARCIA RM, JIMÉNEZ ORTEGA Al, NAVIA LOMBÅN B. Supiementos en gestaciön: ültimas recomendaciones. Nutr Hosp [internet]. 2016; 33 (Supl. 4): 3-7. [citado 23 Sept 2018] URL disponible en: http://scielo.isciii.es/pdf/nh/v33s4/01_original.pdf

YANG W, CARMICHAEL SL, SHAW GM. Folic acid fortification and prevalences of Neural Tube Defects, Orofacial Clefts, and Gastroschisis in California, 1989 to 2010. [internet]. 2016;106, 12: 1032 1041. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ bdra.23514

NICHOLAS DE. Neural Tube Defects. An Rev Neurosc [internet]. 2014; 37: 221-242. [citado 23 Sept 2018]URL disponible en: https://www.annualreviews.org/doi/pdf/10.1146/annurevneuro-062012-170354

TABOADA LUGO N, HERRERA MARTINEZ M, HERNANDEZ ALAGORA AE, NOCHE GONZALEZ G, NOA MACHADO MD. Conglomerados espacio-temporales de defectos del tubo neural y niveles maternos de alfafetoproteina en Villa Clara (2011-2015). Rev cubana Obst Ginecol [internet]. 2016; 42(4). [citado 23 Sept 2018] URL disponible en: http://revginecobstetricia.sld.cu/index.php/ gin/a rticle/view/110

ARTH A, KANCHERLA V, PACHON H, ZIMMERMAN S, JHONSON Q, OAKLEY GP. A 2015 global update on folic acid-preventable spina bifida and anencephaly. Birth Defects Research (Part A) [internet]. 2016; 106:520-529 [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/ pdf/10.1002/bdra.23529

ZAGANJOR I, SEKKARIE A, TSANG BL, WILLIAMS J, RAZZAGHI H, MULINARE J, SNIEZEK JE, CANNON MJ, ROSENTHAL J. Describing the prevalence of Neural Tube Defects worldwide: A systematic literature review. Plos one [internet]. 2016; 11(4 [citado 23 Sept 2018] URL disponible en: https:// www.ncbi.nlm.nih.gov/pubmed/27064786

BA G, JUN WQ, LING CY, HONG HY, TING GT. Prevalence and time trends of spina bifida in fourteen cities located in the Liaoning province of northeast China, 2006-2015. Oncotarget [internet]. 2017; 8(12): 18943-18948. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC5386660/

KHOSHNOOD B, HERMIEN DE WALLE ML, ARRIOLA L, ADDOR MC, BARISIC l, BERES J, ET AL. Longterm trends in prevalence of neural tube defects in Europe: population based study. BMJ [internet]. 2015; 351:1-6 [citado 23 Sept 2018] URL disponible en: https://www.bmj.com/content/ bmj/351/bmj.h5949.full.pdf

MARTIN-SUBEROJI,SIEBERR. Epigenéticayepigen6mica.BolCientlnf.Acad mexicana Ped.[internet]. 2016; 1:261-277. [citado 23 Sept 2018] URL disponible en: www.academiamexicanadepediatria. com

LEUNG KY, PAI YJ, CHEN Q, SANTOS C, CALVANI E, SUDIWALA S, ET AL. Partitioning of one-carbon units in folate and methionine metabolism is essential for neural tube closure. Cell Reports [internet]. 2017; 21: 1795-1808. [citado 23 Sept 2018] URL disponible en: https://doi.org/10.1016/j. celrep.2017.10.072

MORALES MA, MÉNDEZ K, SOL(s E, BORJAS BL, BRACHO A, HERNANDEZ ML, ET AL. C677T polymorphism of the methylentetrahydrofolate reductase gene in mothers of children affected with neural tube defects. Invest Clin [internet]. 2015; 56(3):284-95. [citado 26 Feb 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26710543

PANGILINAN F, MOLLOY AM, MILLS JL, TROENDLE JF, MCDERMOTT AP, SIGNORE C, ET AL. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC Medical Genetics [en linea] 2012; 13:62. [citado 23 Sept 2018] URL disponible en:http://www. biomedcentral.com/1471-2350/13/62

WILSON RD, AUDIBERT F, BROCK JA, CAROLL J, CARTIER L, GAGNON A, ET AL. Pre-conception folic acid and multivitamin supplementation for the primary and secondary prevention of neural tube defects and other folic acid-sensitive congenital anomalies. J Obstet Gynaecol Can [internet]. 2015; 37(6):534-52. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/ pubmed/26334606

TORIYAMA M, TORIYAMA M, WALLINGFORD JB, FINNELL RI-I. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure. FASEB J. [internet]. 2017;31(8):36223635. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28432198

WANG L, CHANG S, WANG Z, WANG S, HI-JO J, DING G, ET AL. Altered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects. Oncotarget. [internet]. 2017;8(67):110797-110810. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29340017

HOBBS CA, CLEVES MA, MCLEOD SL, ERICKSON SW, TAND X, Ll J, ET AL. Conotruncal heart defects and common variants in maternal and fetal genes in folate, homocysteine, and transsulfuration pathways. Birth Defects Research (Part A) [internet]. 2014; 100:116-126. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bdra.23225

VAN VELZEN CL, CLUR SA, RIJLAARSDAM MEB, BAX CJ, PAJKRT E, HEYMANS MW, ET AL. Prenatal detection of congenital heart disease—results of a national screening programme. BJOG [internet]. 2016;123:400-407 [citado 23 Sept 2018] URL disponible en: https://obgyn.onlinelibrary.wiley.

GILBOA SM, DEVINE OJ, KUCIK JE, OSTER ME, RIEHLE-COLARUSSO T, NEMBHARD WN, ET AL. Congenital heart defects in the United States. Estimating the magnitude of the affected population in 2010. Circulation [internet]. 2016;134:101-109 [citado 23 Sept 2018] URL disponible en: http:// circ.ahajournals.org/content/134/2/101

SERRA-JUHÉ C, CUSCÖ l, HOMS A, FLORES R, TORÅN N, PÉREZ-JURADO LA. DNA methylation abnormalities in congenital heart disease. Epigenetics [internet]. 2015; 10(2): 167-177 [Internet] [citado 23 Sept 2018] URL disponible en: https://www.tandfonline.com/doi/

Ll FF, ZHOU J, ZHAO DD, YAN P, Ll X, HAN Y, ET AL. Characterization of SMAD3 gene variants for possible roles in ventricular septal defects and other congenital heart diseases. PLOS ONE [internet]. 2015;10(6). [citado 23 Sept 2018] URL disponible en: http://journals.plos.org/plosone/ article/file?id=10.1371/journal.pone.0131542&type=printable

ELSAYED GM, ELSAYED SM, EZZ-ELARAB SS. Maternal MTHFR C677T genotype and septal defects in offspring with Down syndrome: A pilot study. Eg J Hum Gen [internet]. 2014; 15: 39-44 [citado 26 Feb 2018] URL disponible en: https://www.ajol.info/index.php/ejhg/article/view/100842

ORIHUELA MERCADO O, TABOADA LUGO N, LARDOEYT FERRER R, QUINTERO ESCOBAR K.

Prevalencia y caracterizaciön clinicogenética del sindrome Down en la zona Paititi del municipio Trinidad, Departamento Beni. Rev Inv e Inf Salud. [internet]. 2014; 9(21):17-27 [citado 23 Sept 2018] URL disponible en: http://www.univalle.edu/images/publicaciones/Revista%20de%20

Salud%20%2021Armado%2 0 pressed.pdf

KARMILOFF-SMITH A, AL-JANABI T, D'SOUZA, GROET J, MASSAND E, MOK K, ET AL. The importance of understanding individual differences in Down syndrome. FIOOO Research [internet]. 2016; 5(F1000 Faculty Rev):389 [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC4806704/pdf/f1000research-5-8085.pdf

DIAZ CS, YOKOYAMA RE, DEL CASTILLO RV. Gen6mica del sindrome de Down. Acta Pediatr Mex [internet]. 2016;37(5):289-296 [citado 23 Sept 2018] URL disponible en: http://www.scielo.org.mx/scielo.php?pid=S0186-23912016000500289&script=sci_arttext

GHOSH S, GHOSH P. Genetic etiology of chromosome 21 non disjunction and Down syndrome birth: Aberrant recombination and beyond. J Down Syndr Chr Abnorm [internet]. 2015; 1(1): 2-5. [citado 23 Sept 2018] URL disponible en:https://www.researchgate.net/profile/Sujoy_Ghosh4/publication/309277695_Genetic_Etiology_of_Chromosome_21_Nondisjunction_and_Down_ syndrome_Birth_Aberrant_Recombination_and_Beyond/links/580eba5808aef766ef10e859/ Genetic-Etiology-of-Chromosome-21-Nondisjunction-and-Down-syndrome-Birth-AberrantRecombination-and-Beyond.pdf

KAUR A, KAUR A. Maternal MTHFR polymorphism (677 C-T) and risk of Down's syndrome child: meta-analysis. J Genet. [internet]. 2016; 95(3):505-13. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27659321

COPPEDÉ F. The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front Genet [internet]. 2015; 6:216-223. [citado 26 Feb 2018] URL disponible en: https://www.frontiersin.org/articles/10.3389/fgene.2015.00223/ full#hll

BROOKER AS, BERKOWITZ KM. The role of cohesins in mitosis, meiosis, and human health and disease. Methods Mol Biol [en linea] 2014 ; 1170: 229-266. [citado 23 Sept 2018] URL disponible en:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495907/pdf/nihms614241.pdf

SUN F, FUJIWARA Y, REINHOLDT LG, HU J, SAXL RI. Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. Chromosom [internet]. 2015; 124:397-415. [citado 23 Sept 2018]] URL disponible en: https://link.springer.com/content/ pdf/10.1007%2Fs00412-015-0511-3.pdf

JUREWICZ J, RADWAN M, SOBALA W, POLANSKA K, RADWAN P, JAKUBOWSKI L, ET AL. The relationship between exposure to air pollution and sperm disomy. Env Mol Mut. [internet]. 2015; 56:50-59. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/ pdf/10.1002/em.21883

BEZERRA JF, OLIVEIRA GHM, SOARES CD, CARDOSO ML, URURAHY MAG, NE-TO FPF, ET AL. Genetic and non-genetic factors that increase the risk of non-syndromic cleft lip and/or palate development. Oral Diseases [internet]. 2015; 21:393-399 [citado 23 Sept 2018] URL disponible

SILVA MARD, BALDERRAMA IF, WOBETO AP, WERNECK RI, AZEVEDO-ALANIS LR. The impact of nonsyndromic cleft lip with or without cleft palate on oral health-related quality of life. J Appl Oral Sci [internet]. 2018; 26: 1-6 [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC5912398/pdf/1678-7757-jaos-26-e20170145.pdf

JIA Z, LESLIE EJ, COOPER ME, BUTALI A, STANDLEY J, RIGDON J, ET AL. Replication of 13q31.1 association in nonsyndromic cleft lip with cleft palate in Europeans. Am J Med Genet Part A[internet]. 2015; 167A:1054-1060. [citado 23 Sept 2018] URL disponible en: http://onlinelibrary. wiley.com/doi/10.1002/ajmg.a.36912/pdf

MAI CT, ISENBURG J, LANGLOIS PH, ALVERSON CJ, GILBOA SM, RICKARD R, ET AL. Population based birth defects data in the United States, 2008 to 2012: Presentation of State -specific data and descriptive brief on variability of prevalence. Birth Defects Res A Clin Mol Teratol [internet]. 2015; 103(11): 972-993. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/ doi/pdf/10.1002/bdra.23461

URIBE M, FOMINA RG, ROMITTI PA, JENKINS MM, GJESSING 1-4K, GJERDEVIK M, ET AL. A population-based study of effects of genetic loci on orofacial clefts. J Dent Res [internet]. 2017;96(11):1322-1329. [citado 23 Sept 2018] URL disponible en:http://journals.sagepub.com/ doi/pdf/10.1177/0022034517716914

SUN Y, HUANG Y, YIN A, PAN Y, WANG Y, WANG C, ET AL. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Commun[internet]. 2015; [citado 23 Sept 2018] URL disponible en:https://www.nature.com/articles/ncomms7414.pdf

PAN X, WANG P, YIN X, LIU X, Ll D, Ll X, ET AL. Association between Maternal MTHFR Polymorphisms and Nonsyndromic Cleft Lip with or without Cleft Palate in Offspring, A Meta-Analysis Based on 15 Case-Control Studies. Int J Fertil Steril. [internet]. 2015;8(4):463-80. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355933/

GIVEN JE, LOANE M, GARNE E, NE-LEN V, BARISIC I, RANDRIANAIVO H, ET AL. Gastroschisis in Europe - A Case-malformed-control study of medication and maternal illness during pregnancy as risk factors. Ped Perinat Epidemiol [internet]. 2017; 31, 549-559 [citado 23 Sept 2018] URL disponible

NAZER HJ, KARACHON EL, CIFUENTES OL, ASSAR CR. Gastrosquisis: pandemia con tasas en aumento? Experiencia del estudio colaborativo latino americano de malformaciones congénitas (ECLAMC) en Chile. Periodo 1982-2014. Rev Chil Pediatr. 2016; [internet] 87(5):380386 [citado 23 Sept 2018] URL disponible en: https://scielo.conicyt.cl/scielo.php?pid=S0370-

&script=sci_arttext&tlng=pt

MARTILLOTTI G, BOUCOIRAN l, DAMPHOUSSE A, GRIGNON A, DUBÉ E, MOUSSAA, ET AL. Predicting perinatal outcome from prenatal ultrasound characteristics in pregnancies complicated by gastroschisis. Fetal Diagn Ther [internet]. 2016; 39:279-286 [citado 23 Sept 2018] URL disponible en: https://www.karger.com/Article/Pdf/440699

PADULAAM, YANG W, SCHULTZ K, TOM L, LIN B, CARMICHAEL SL, ET AL. Gene variants as risk factors for gastroschisis. Am J Med Genet Part A [internet]. 2016;170A:2788-2802. [citado 23 Sept 2018] URL disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajmg.a.37883

ROBLEDO AM, BOBADILLA ML, MELLiN SEL, CORONA RA, pÉREZ MJ, CARDENAS RV, ET AL.

Prevalence and risk factors for gastroschisis in a public hospital from west México. Congenit Anom [internet]. 2015;55(2):73-80. [citado 23 Sept 2018] URL disponible en:https://www.ncbi.nlm.nih. gov/pubmed/25243388

JENKINS MM, REEFHUIS J, GALLAGHER ML, MULLE JG, HOFFMANN TH, KOONTZ DA, ET AL. Maternal smoking, xenobiotic metabolizing enzyme gene variants, and gastroschisis risk. Am J Med Genet A [internet]. 2014; 0(6): 1454-1463. [citado 23 Sept 2018]] URL disponible en: https://onlinelibrary. wiley.com/doi/pdf/10.1002/ajmg.a.36478

GENG Y, GAO R, CHEN X, LIU X, LIAO X, Ll Y, ET AL. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice. Mol Hum Reprod. [internet]. 2015;21(11):844-56. [citado 23 Sept 2018] URL disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26246607

Descargas

Publicado

2019-08-30

Cómo citar

Taboada Lugo , N., & Herrera Martínez , M. (2019). Actualización sobre los mecanismos genéticos y epigenéticos en el origen de los defectos congénitos sensibles a la deficiencia materna de ácido fólico. Revista De Investigación E Información En Salud, 13(36), 64–82. https://doi.org/10.52428/20756208.v13i36.476

Número

Sección

Artículos Originales