Desarrollo rápido de polímeros con impresión molecular para la remoción eficiente de iones de cadmio del agua
DOI:
https://doi.org/10.52428/27888991.v7i11.1474Palabras clave:
Polimero, RemoverResumen
Los polímeros con impresión molecular (MIPs, por sus siglas en inglés) son redes poliméricas entrecruzadas especializadas diseñadas para mostrar una fuerte afinidad hacia moléculas, iones o especies metálicas específicas, y también pueden exhibir una selectividad notable frente a compuestos estructuralmente relacionados. En este trabajo se describe la creación de un polímero impreso con iones de cadmio (II) destinado a la extracción selectiva de iones de cadmio de matrices acuosas. Se utilizó 4-vinilpiridina como monómero funcional en el proceso de polimerización en bloque empleado para la síntesis del polímero. Para lograr una caracterización completa se realizaron análisis termogravimétricos (TGA), microscopía electrónica de barrido (SEM) y análisis elemental CHNS. Se llevaron a cabo estudios de equilibrio para verificar las propiedades de adsorción, determinándose que el mecanismo de adsorción es exotérmico y sigue cinética pseudo-primer orden, de acuerdo con los análisis cinéticos y termodinámicos. Cuando se probó en mezclas binarias de iones, el polímero sintetizado mostró una selectividad excepcional hacia los iones Cd(II). Además, durante múltiples ciclos de adsorción-desorción, el material demostró una capacidad de regeneración sobresaliente.
Descargas
Citas
Ahmed, A. I., Hammad, K. I., Khalaf, M. H., & Hammad, A. I. (2025). Effective cadmium ion removal from wastewater using glycerol-assisted synthesis and alumina-coated MnNi catalysts derived from mixed metal salts. Next Materials, 9, 101242. https://doi.org/10.1016/j.nxmate.2025.101242
Ansari, S., & Karimi, M. (2017). Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis. Talanta, 167, 470–485. https://doi.org/10.1016/j.talanta.2017.02.049
Cormack, P. A., & Elorza, A. Z. (2004). Molecularly imprinted polymers: Synthesis and characterisation. Journal of Chromatography B, 804(1), 173–182. https://doi.org/10.1016/j.jchromb.2004.02.013
Cui, Y., Ding, L., & Ding, J. (2022). Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. TrAC Trends in Analytical Chemistry, 147, 116514. https://doi.org/10.1016/j.trac.2021.116514
Fan, H. T., Li, J., Li, Z. C., & Sun, T. (2012). An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (II) from aqueous solution. Applied Surface Science, 258(8), 3815–3822. https://doi.org/10.1016/j.apsusc.2011.12.032
Guo, B., Deng, F., Zhao, Y., Luo, X., Luo, S., & Au, C. (2014). Magnetic ion-imprinted and –SH functionalized polymer for selective removal of Pb(II) from aqueous samples. Applied Surface Science, 292, 438–446. https://doi.org/10.1016/j.apsusc.2013.11.156
Haddad, K., Ghafer, M., Salman, H., & Rakkad, H. E. (2025). Cadmium removal from aqueous solutions using olive stone activated carbon. Results in Chemistry, 14, 102137. https://doi.org/10.1016/j.rechem.2025.102137
Kumar, P., & Kumar, P. (2019). Removal of cadmium (Cd II) from aqueous solution using gas industry-based adsorbent. SN Applied Sciences, 1(4), Article 365. https://doi.org/10.1007/s42452-019-0377-8
Liu, Y., Wang, L., Li, H., Zhao, L., Ma, Y., Zhang, Y., Liu, J., & Wei, Y. (2024). Rigorous recognition mode analysis of molecularly imprinted polymers: Rational design, challenges, and opportunities. Progress in Polymer Science, 150, 101790. https://doi.org/10.1016/j.progpolymsci.2024.101790
Luo, X., Luo, S., Zhan, Y., Shu, H., Huang, Y., & Tu, X. (2011). Novel Cu(II) magnetic ion-imprinted materials prepared by surface imprinted technique combined with a sol–gel process. Journal of Hazardous Materials, 192(2), 949–955. https://doi.org/10.1016/j.jhazmat.2011.05.042
Malbenia, M. J., Benettayeb, A., Belkacem, M., Mitchel, C. R., Brahim, M. H., Benettayeb, I., Alkehtane, A. A., Ghoush, H., & Ba-deghaish, A. H. (2024). An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. Chemosphere, 347, 142051. https://doi.org/10.1016/j.chemosphere.2023.142051
Memon, G. Z., Bhanger, M. I., Akhtar, M., Talpur, F. N., & Memon, J. R. (2008). Adsorption of methyl parathion pesticide from water using watermelon peels as a low-cost adsorbent. Chemical Engineering Journal, 138(1-3), 616–621. https://doi.org/10.1016/j.cej.2007.09.027
Memon, G. Z., Bhanger, M. I., & Akhtar, M. (2007). The removal efficiency of chestnut shells for selected pesticides from aqueous solutions. Journal of Colloid and Interface Science, 315(1), 33–40. https://doi.org/10.1016/j.jcis.2007.06.037
Memon, G. Z., Bhanger, M. I., & Akhtar, M. (2009). Adsorption of methyl parathion from aqueous solutions using mango kernels: Equilibrium, kinetic and thermodynamic studies. Bioremediation Journal, 13(3), 102–106. https://doi.org/10.1080/10889860902902088
Ndunda, E. N. (2020). Molecularly imprinted polymers: A closer look at the control polymer used in determining the imprinting effect—A mini review. Journal of Molecular Recognition, 33(11), e2855. https://doi.org/10.1002/jmr.2855
Nishide, H., Deguchi, J., & Tsuchida, E. (1976). Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template. Chemistry Letters, 5(2), 169–174. https://doi.org/10.1246/cl.1976.169
Priyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal-tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686
Qiu, H., Pan, B., Zhang, Q., Zhang, W., & Zhang, Q. (2009). Critical review in adsorption kinetic models. *Journal of Zhejiang University-Science A, 10*(5), 716–724. https://doi.org/10.1631/jzus.A0820524
Wang, F. Y., Wang, H., & Ma, J. W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of Hazardous Materials, 177(1-3), 300–306. https://doi.org/10.1016/j.jhazmat.2009.12.032
Zhang, L., Yang, S., Han, T., Zhang, L., Zhong, Y., & Han, X. (2012). Improvement of Ag(I) adsorption onto chitosan/triethanolamine composite sorbent by an ion-imprinted technology. Applied Surface Science, 263, 696–703. https://doi.org/10.1016/j.apsusc.2012.09.143
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Zuhra Memon

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Authors who publish in this journal agree to the following conditions: Authors retain copyright and grant the journal the right of first publication, with the work licensed under a Creative Commons Attribution 4.0 International License, which allows others to use the published work provided they acknowledge the authorship and initial publication in this journal. Authors may enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (e.g., posting it to an institutional repository or publishing it in a book), provided they clearly indicate that the work was first published in this journal. Authors are permitted and encouraged to share their work online (e.g., in institutional repositories or on personal websites) before and during the manuscript submission process, as this can lead to productive exchanges and increased and faster citation of the published work.