Comportamento de fluência e retração de compósitos reforçados com fibras de carbono: uma revisão
DOI:
https://doi.org/10.52428/20758944.v17i51.133Palabras clave:
Matriz cimentícia, Matriz polimérica, Fluência, Retração, Pré-fissuraçãoResumen
Considerando a relevância dos fenômenos fluência e retração dos concretos, o presente estudo tem como objetivo geral desenvolver uma revisão da literatura sobre estes dois comportamentos em compósitos reforçados com fibras de carbono. Foi realizada uma busca nos bancos de dados “Web of Science” e “Scopus” com combinações específicas de palavras-chave. A seleção foi baseada nos estudos mais relevantes de cada tema, priorizando a propriedade mecânica de fluência. Com base nos estudos apresentados, verificou-se que a fibra de carbono influencia significativamente na capacidade de restringir a fluência e o encolhimento dos concretos. Outro ponto observado no estudo é que fibras com módulo de elasticidade maior do que o de concreto simples têm a capacidade de resistir a fluência, ao contrário das fibras com menor módulo, mesmo em ensaios de fluência com concretos já pré-fissurados. Embora existam vários estudos, ainda não há um entendimento completo do assunto. O comportamento de fluência e retração pode ser explorado em compósitos reforçados com fibras de carbono quando expostos a altas temperaturas, em concretos de ultra alto desempenho, em pós-fissuração de elementos estruturais, entre outros.
Descargas
Citas
American Concrete Institute – ACI (1992). Prediction of creep, shrinkage, and temperature effects in concrete structures. Committee 209, American Concrete Institute, Detroit.
Al Chami, G., Thériault, M., & Neale, K. W. (2009). Creep behaviour of CFRP-strengthened reinforced concrete beams. Construction and Building Materials, 23(4), 1640-1652. https://doi.org/10.1016/j.conbuildmat.2007.09.006
American Society for Testing and Materials – ASTM (1983). ASTM C490, Revision 83A, May 27, 1983 - Standard specification for use in measurement of length change of hardened cement paste, mortar, and concrete. ASTM International.
Ascione, F., Berardi, V. P., Feo, L., & Giordano, A. (2008). An experimental study on the long-term behavior of CFRP pultruded laminates suitable to concrete structures rehabilitation. Composites Part B: Engineering, 39(7-8), 1147-1150. https://doi.org/10.1016/j.compositesb.2008.03.008
Arockiasamy, M., Chidambaram, S., Amer, A., & Shahawy, M. (2000). Time-dependent deformations of concrete beams reinforced with CFRP bars. Composites Part B: Engineering, 31(6-7), 577-592. https://doi.org/10.1016/S1359-8368(99)00045-1
Azhari, F., & Banthia, N. (2012). Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 34(7), 866-873. https://doi.org/10.1016/j.cemconcomp.2012.04.007
Baldenebro-Lopez, F. J., Castorena-Gonzalez, J. H., Baldenebro-Lopez, J. A., Velazquez-Dimas, J. I., Ledezma-Sillas, J. E., Martinez-Sanchez, R., & Herrera-Ramirez, J. M. (2014). Cement-matrix composites reinforced with carbon fibers as a multifunctional material. Microscopy and Microanalysis, 20(S3), 1880-1881. https://doi.org/10.1017/S1431927614011131
Banthia, N., Djeridane, S., & Pigeon, M. (1992). Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cement and Concrete research, 22(5), 804-814. https://doi.org/10.1016/0008-8846(92)90104-4
Bolat, H., Şimşek, O., Çullu, M., Durmuş, G., & Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191-198. https://doi.org/10.1016/j.compositesb.2014.01.043
Boshoff, W. P., Mechtcherine, V., & van Zijl, G. P. (2009). Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 1: Mechanism of fibre pull-out creep. Cement and Concrete Research, 39(9), 779-786. https://doi.org/10.1016/j.cemconres.2009.06.007
Chen, P. W., & Chung, D. D. L. (1996). Low-drying-shrinkage concrete containing carbon fibers. Composites Part B: Engineering, 27(3-4), 269-274. https://doi.org/10.1016/1359-8368(95)00020-8
Cui, H., Jin, Z., Zheng, D., Tang, W., Li, Y., Yun, Y., Lo, T., & Xing, F. (2018). Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites. Construction and Building Materials, 181, 713-720. https://doi.org/10.1016/j.conbuildmat.2018.06.049
Deskovic, N., Meier, U., & Triantafillou, T. C. (1995). Innovative design of FRP combined with concrete: long-term behavior. Journal of Structural Engineering, 121(7), 1079-1089. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1079)
Domski, J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.165
Eisa, A. S., Elshazli, M. T., & Nawar, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252, 119078. https://doi.org/10.1016/j.conbuildmat.2020.119078
Gailitis, R., Sliseris, J., Korniejenko, K., Mikuła, J., Łach, M., Pakrastins, L., & Sprince, A. (2020). Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite. Mechanics of Composite Materials, 56(1), 85-92. https://doi.org/10.1007/s11029-020-09862-w
Goertzen, W. K., & Kessler, M. R. (2006). Creep behavior of carbon fiber/epoxy matrix composites. Materials Science and Engineering: A, 421(1-2), 217-225. https://doi.org/10.1016/j.msea.2006.01.063
Granju, J. L., & Balouch, S. U. (2005). Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35(3), 572-577. https://doi.org/10.1016/j.cemconres.2004.06.032
Guerini, V., Conforti, A., Plizzari, G., & Kawashima, S. (2018). Influence of steel and macro-synthetic fibers on concrete properties. Fibers, 6(3), 47. https://doi.org/10.3390/fib6030047
Khadraoui, F. (2012). Creep and shrinkage behaviour of CFRP-reinforced mortar. Construction and Building Materials, 28(1), 282-286. https://doi.org/10.1016/j.conbuildmat.2011.07.048
Kim, G. M., Yoon, H. N., & Lee, H. K. (2018). Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Construction and Building Materials, 177, 428-435. https://doi.org/10.1016/j.conbuildmat.2018.05.127
Kromoser, B., Preinstorfer, P., & Kollegger, J. (2019). Building lightweight structures with carbon‐fiber‐reinforced polymer‐reinforced ultra‐high‐performance concrete: Research approach, construction materials, and conceptual design of three building components. Structural Concrete, 20(2), 730-744. https://doi.org/10.1002/suco.201700225
Mosavinejad, S. G., Langaroudi, M. A. M., Barandoust, J., & Ghanizadeh, A. (2020). Electrical and microstructural analysis of UHPC containing short PVA fibers. Construction and Building Materials, 235, 117448. https://doi.org/10.1016/j.conbuildmat.2019.117448
Liu, B., Liu, Z., Wang, X., Zhang, G., Long, S., & Yang, J. (2013). Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polymer testing, 32(4), 724-730. https://doi.org/10.1016/j.polymertesting.2013.03.020
Mousavi, S. M., Ranjbar, M. M., & Madandoust, R. (2019). Combined effects of steel fibers and water to cementitious materials ratio on the fracture behavior and brittleness of high strength concrete. Engineering Fracture Mechanics, 216, 106517. https://doi.org/10.1016/j.engfracmech.2019.106517
Park, S. B., & Lee, B. I. (1993). Mechanical properties of carbon-fiber-reinforced polymer-impregnated cement composites. Cement and Concrete Composites, 15(3), 153-163. https://doi.org/10.1016/0958-9465(93)90004-S
Park, S. B., Lee, B. I., & Lim, Y. S. (1991). Experimental study on the engineering properties of carbon fiber reinforced cement composites. Cement and concrete research, 21(4), 589-600. https://doi.org/10.1016/0008-8846(91)90110-4
Pujadas, P., Blanco, A., Cavalaro, S., De la Fuente, A., & Aguado, A. (2017). The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete. Construction and Building Materials, 149, 790-800. https://doi.org/10.1016/j.conbuildmat.2017.05.166
Pyo, S., Tafesse, M., Kim, H., & Kim, H. K. (2017). Effect of chloride content on mechanical properties of ultra high performance concrete. Cement and Concrete Composites, 84, 175-187. https://doi.org/10.1016/j.cemconcomp.2017.09.006
Raj, B., Sathyan, D., Madhavan, M. K., & Raj, A. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373. https://doi.org/10.1016/j.conbuildmat.2020.118373
Sadrinejad, I., Madandoust, R., & Ranjbar, M. M. (2018). The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials, 178, 72-82. https://doi.org/10.1016/j.conbuildmat.2018.05.145
Song, W., Yi, J., Wu, H., He, X., Song, Q., & Yin, J. (2019). Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag. Journal of Cleaner Production, 238, 117819. https://doi.org/10.1016/j.jclepro.2019.117819
Sun, M. Q., Li, J., Wang, Y. J., & Zhang, X. Y. (2015). Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat. Construction and Building Materials, 79, 283-289. https://doi.org/10.1016/j.conbuildmat.2015.01.060
Tang, S.; Huang, D., & He, Z. (2021). A review of autogenous shrinkage models of concrete, Journal of Building Engineering, 103412. https://doi.org/10.1016/j.jobe.2021.103412
Wang, Y., Zhang, S., Li, G., & Shi, X. (2019). Effects of alkali-treated recycled carbon fiber on the strength and free drying shrinkage of cementitious mortar. Journal of Cleaner Production, 228, 1187-1195. https://doi.org/10.1016/j.jclepro.2019.04.295
Wongtanakitcharoen, T., & Naaman, A. E. (2007). Unrestrained early age shrinkage of concrete with polypropylene, PVA, and carbon fibers. Materials and structures, 40(3), 289-300. https://doi.org/10.1617/s11527-006-9106-z
Yoo, D. Y., Gim, J. Y., & Chun, B. (2020a). Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete. Journal of Materials Research and Technology, 9(3), 3632-3648. https://doi.org/10.1016/j.jmrt.2020.01.101
Yoo, D. Y., Shin, W., & Chun, B. (2020b). Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers. Cement and Concrete Composites, 109, 103566. https://doi.org/10.1016/j.cemconcomp.2020.103566
Zhang, Y. Y., Sun, Z., Li, Y. Q., Huang, P., Chen, Q., & Fu, S. Y. (2021). Tensile creep behavior of short-carbon-fiber reinforced polyetherimide composites. Composites Part B: Engineering, 212, 108717. https://doi.org/10.1016/j.compositesb.2021.108717
Zhao, Q., Yu, J., Geng, G., Jiang, J., & Liu, X. (2016). Effect of fiber types on creep behavior of concrete. Construction and Building Materials, 105, 416-422. https://doi.org/10.1016/j.conbuildmat.2015.12.149
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Lidianne do Nascimento Farias, Joaquin Humberto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons 4.0, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.