Determinación de la influencia del agua del Municipio de Tiquipaya en la resistencia a la compresión del hormigón

Autores/as

  • Joaquín Humberto Aquino Rocha
  • Sergio Manuel Rodríguez Belmonte
  • Luis Felipe Portillo Terán
  • Giovanni Galindo Añez

DOI:

https://doi.org/10.52428/20758944.v15i46.777

Palabras clave:

Hormigón, Resistencia a la compresión, Agua de mezclado

Resumen

Si bien se recomienda el uso de agua potable para la fabricación de hormigón, no siempre se tiene acceso a este recurso, especialmente en aquellos municipios donde se tienen diferentes fuentes de agua con composición desconocida. En este sentido, el objetivo del presente estudio fue determinar la influencia del agua proveniente de diferentes fuentes del municipio de Tiquipaya-Cochabamba, en la resistencia a la compresión del hormigón. La metodología consistió en la fabricación de cilindros de hormigón con tres diferentes fuentes de agua: Campus Univalle, pozo municipal y canal de riego municipal. Se determinó la resistencia a la compresión a los 7, 14, 21 y 28 días de edad. Los resultados muestran que los cilindros fabricados con el agua del Campus Univalle tienen los mejores resultados, con una resistencia a la compresión de 322 kg/cm2 a los 28 días, mientras que los cilindros fabricados con las otras fuentes, pozo y canal de riego, 265 y 242 kg/cm2, respectivamente. El agua potable del Campus Univalle se presentó adecuada para su uso en la fabricación del hormigón, una vez que los resultados fueron mayores a los proyectados, contrariamente al uso de otras fuentes no potables, las cuales tuvieron influencia negativa en esta propiedad. Es importante que se realicen estudios previos del agua a ser utilizada en la fabricación del hormigón para obtener los resultados esperados, garantizando, de esta forma, calidad y seguridad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AASHTO - American Association of State Highway and Transportation Officials (2008). T 26-79: Standard method of test for quality of water to be used in concrete. Washington D. C.: AASHTO.

ACI - American Concrete lnstitute (2014). 318-14: Building Code Requirementsfor Structural Concrete. Detriot: ACI.

Al-Harthy, A.S., Taha, R., Abu-Ashour, J., Al-Jabri, K. y Al-Oraimi, S. (2005). Effect of water quality on the strength of flowable fill mixtures. Cement and Concrete Composites. 27: 33-39. Doi: https://doi.org/10.1016/j.cemconcomp.2004.01.005 DOI: https://doi.org/10.1016/j.cemconcomp.2004.01.005

Asadollahfardi, G., Delnavaz, M., Rashnoiee, V. y Ghonabadi, N. (2016). Use of treated domestic wastewater befare chlorination to produce and cure concrete. Construction and Building Materials. 105: 253-261. Doi: https://doi.org/10.1016/j.conbuildmat.2015.12.039 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.039

ASTM - American society for testing and materials (2018a). C1602/C1602M-18: Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. West Conshohocken: ASTM lnternational.

ASTM (1994). C184-94el - Standard Test Method for Fineness of Hydraulic Cement by the 150-µm (No. 100) and 75-µm (No. 200) Sieves (Withdrawn 2002). West Conshohocken: ASTM nternational.

ASTM (2004). C127-04: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. West Conshohocken: ASTM lnternational.

ASTM (2015a). (128-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. West Conshohocken: ASTM lnternational.

ASTM (2015b). C143/C143M-15a: Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken: ASTM lnternational.

ASTM (2016). C109/C109M-16a: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken: ASTM lnternational.

ASTM (2017a). (188-17: Standard Test Method for Density of Hydraulic Cement.West Conshohocken: ASTM lnternational.

ASTM (2017b). Cll 7-17: Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing. West Conshohocken: ASTM lnternational.

ASTM (2017c). C29/C29M-17a: Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate. West Conshohocken: ASTM lnternational.

ASTM (2018b). ASTM C94/C94M -18: Standard Specification for Ready-Mixed Concrete. West Conshohocken: ASTM lnternational.

ASTM (2018c). C191-18a: Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. West Conshohocken: ASTM lnternational.

ASTM (2018d). C33/C33M-18: Standard Specification forConcreteAggregates. WestConshohocken: ASTM lnternational.

ASTM (2018e). C88/C88M-18: Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. West Conshohocken: ASTM lnternational.

ASTM (2018f). C192/C192M-18: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken: ASTM lnternational.

ASTM (2018g). C39/C39M-18: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken: ASTM lnternational.

Babu, G.R. y Ramana, N.V. (2018). Feasibility of wastewater as mixing water in cement. Materials today: Proceedings. 5(1) Part 1: 1607-1614. Doi: https://doi.org/10.1016/j.matpr.2017.11.253 DOI: https://doi.org/10.1016/j.matpr.2017.11.253

Babu, G.R., Reddy, B.M. y Ramana, N.V. (2018). Quality of mixing water in cement concrete "a review". Materials today: Proceedings. 5(1) Part 1: 1313-1320. Doi: https://doi.org/10.1016/j.matpr.2017.11.216 DOI: https://doi.org/10.1016/j.matpr.2017.11.216

BSI - British Standard lnstitute (1980). BS 3148-1980: Method for test for water for making concrete. London: British standard institute.

BSI (2002). BS EN 1008:2002 - Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. London: British standard institute.

Cebeci, Z. y Saatci, M. (1989). Domestic Sewage as Mixing Water in Concrete. Materials Journal. 5: 503-506.

Chatveera, B., Lertwattanaruk, P. y Makul, N. (2006). Effect of sludge water from ready-mixed concrete plant on properties and durability of concrete. Cement and Concrete Composites. 28: 441-450. https://doi.org/10.1016/j.cemconcomp.2006.01.001 DOI: https://doi.org/10.1016/j.cemconcomp.2006.01.001

Cornak, B. (2018). Effects of use of alkaline mixing waters on engineering properties of cement mortars. European Journal of Environmental and Civil Engineering. 22(6): 736-754. https://doi.org/10.1080/19648189.2016.1217794 DOI: https://doi.org/10.1080/19648189.2016.1217794

De Paula, H.M., De Oliveira llha, M.S., Andrade, L.S. (2014). Concrete plant wastewater treatment process by coagulation combining aluminum sulfate and Moringa oleifera powder. Journal of Cleaner Production, 76: 125-130. https://doi.org/10.1016/j.jclepro.2014.04.031 DOI: https://doi.org/10.1016/j.jclepro.2014.04.031

De Weerdt, K. y Justnes, H. (2015). The effect of sea water on the phase assemblage of hydrated cement paste. Cement and Concrete Composites. 55: 215-222. https://doi.org/10.1016/j.cemconcomp.2014.09.006 DOI: https://doi.org/10.1016/j.cemconcomp.2014.09.006

Fraternali, F., Spadea, S. y Berardi, V.P. (2014). Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Construction and Building Materials. 61: 293-302. https://doi.org/10.1016/j.conbuildmat.2014.03.019 DOI: https://doi.org/10.1016/j.conbuildmat.2014.03.019

IBNORCA - Instituto Boliviano de Normalización y Calidad. (1987). Norma Boliviana CBH 87. La Paz: IBNORCA,293p.

IBNORCA (2005). Reglamento Nacional para el Control de la Calidad del Agua para Consumo Humano NB 512. La Paz: IBNORCA,55p.

Meena, K. y Luhar, S. (2019). Effect of wastewater on properties of concrete. Journal of Building Engineering. 21:106-112. https://doi.org/10.1016/j.jobe.2018.10.003 DOI: https://doi.org/10.1016/j.jobe.2018.10.003

Mehta, K.P. y Monteiro, P. (2014). Concrete: Microstructure, Properties, and Materials. 4th ed. New York: McGraw-Hill. 704p. ISBN: 978-9-339-20476-1.

NEVILLE, A.M. (2000). Water Cinderella lngredient of Concrete.Concrete lnternational. 22(9):66- 71.

Neville, A.M. {2012). 5th ed. Properties of concrete. Harlow: PearsonEducation. 872p. ISBN: 978- 0-273-75580-7.

Noruzman, A.H., Muhammad, B., lsmail, M. y Abdul-Majid, Z. {2012).Characteristics of treated effluents and their potential applications for producing concrete. Journal of Environmental Management. 110: 27-32. Doi: https://doi.org/10.1016/j.jenvman.2012.05.019 DOI: https://doi.org/10.1016/j.jenvman.2012.05.019

Olutoge, F.A. y Amusan, G.M. {2014).The effect of sea water on compressivestrength of concrete. lnternational Journal of EngineeringSciencelnvention. 3(7): 23-31.

Saxena, S. y Tembhurkar, A.R. (2018). lmpact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete. Construction and Building Materials.v.165:126-237. https://doi.org/10.1016/j.conbuildmat.2018.01.030 DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.030

Shi, Z., Shui, Z., Li, Q. y Geng, H. (2015). Combined effect of metakaolin and sea water on performance and microstructures of concrete. Construction and Building Materials. 74: 57-64. Doi: https://doi.org/10.1016/j.conbuildmat.2014.10.023 DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.023

Descargas

Publicado

30-08-2019

Cómo citar

Aquino Rocha, J. H., Rodríguez Belmonte, S. M., Portillo Terán, L. F., & Galindo Añez , G. (2019). Determinación de la influencia del agua del Municipio de Tiquipaya en la resistencia a la compresión del hormigón . Journal Boliviano De Ciencias, 15(46), 62–72. https://doi.org/10.52428/20758944.v15i46.777

Número

Sección

Artículos Científicos