Creep and shrinkage behavior of carbon fiber reinforced composites: a review

Authors

  • Lidianne do Nascimento Farias Universidad Federal de Rio de Janeiro
  • Joaquin Humberto Aquino Rocha Universidad Federal de Rio de Janeiro

DOI:

https://doi.org/10.52428/20758944.v17i51.133

Keywords:

Cement matrix, Polymeric matrix, Creep, Shrinkage, Pre-cracking

Abstract

Considering the relevance of the creep and shrinkage phenomena of concrete, this study aims to develop a literature review on these two behaviors in composites reinforced with carbon fibers. A search was performed in the Web of Science and Scopus databases with specific combinations of keywords. The selection was based on the most relevant studies of each theme, prioritizing the mechanical property of creep. Based on the studies presented, it was identified that carbon fiber significantly influences the ability to restrict creep and shrinkage of concrete. Another point observed in the study is that fibers with a higher modulus of elasticity than plain concrete can resist creep, unlike fibers with a lower modulus, even in creep tests with pre-cracked concrete. Although there are several studies, there is still not a complete understanding of the subject. The creep and shrinkage behavior can be explored in composites reinforced with carbon fibers when exposed to high temperatures, in ultra-high-performance concretes, in post-cracking of structural elements, among others.

Downloads

Download data is not yet available.

References

American Concrete Institute – ACI (1992). Prediction of creep, shrinkage, and temperature effects in concrete structures. Committee 209, American Concrete Institute, Detroit.

Al Chami, G., Thériault, M., & Neale, K. W. (2009). Creep behaviour of CFRP-strengthened reinforced concrete beams. Construction and Building Materials, 23(4), 1640-1652. https://doi.org/10.1016/j.conbuildmat.2007.09.006

American Society for Testing and Materials – ASTM (1983). ASTM C490, Revision 83A, May 27, 1983 - Standard specification for use in measurement of length change of hardened cement paste, mortar, and concrete. ASTM International.

Ascione, F., Berardi, V. P., Feo, L., & Giordano, A. (2008). An experimental study on the long-term behavior of CFRP pultruded laminates suitable to concrete structures rehabilitation. Composites Part B: Engineering, 39(7-8), 1147-1150. https://doi.org/10.1016/j.compositesb.2008.03.008

Arockiasamy, M., Chidambaram, S., Amer, A., & Shahawy, M. (2000). Time-dependent deformations of concrete beams reinforced with CFRP bars. Composites Part B: Engineering, 31(6-7), 577-592. https://doi.org/10.1016/S1359-8368(99)00045-1

Azhari, F., & Banthia, N. (2012). Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 34(7), 866-873. https://doi.org/10.1016/j.cemconcomp.2012.04.007

Baldenebro-Lopez, F. J., Castorena-Gonzalez, J. H., Baldenebro-Lopez, J. A., Velazquez-Dimas, J. I., Ledezma-Sillas, J. E., Martinez-Sanchez, R., & Herrera-Ramirez, J. M. (2014). Cement-matrix composites reinforced with carbon fibers as a multifunctional material. Microscopy and Microanalysis, 20(S3), 1880-1881. https://doi.org/10.1017/S1431927614011131

Banthia, N., Djeridane, S., & Pigeon, M. (1992). Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cement and Concrete research, 22(5), 804-814. https://doi.org/10.1016/0008-8846(92)90104-4

Bolat, H., Şimşek, O., Çullu, M., Durmuş, G., & Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191-198. https://doi.org/10.1016/j.compositesb.2014.01.043

Boshoff, W. P., Mechtcherine, V., & van Zijl, G. P. (2009). Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 1: Mechanism of fibre pull-out creep. Cement and Concrete Research, 39(9), 779-786. https://doi.org/10.1016/j.cemconres.2009.06.007

Chen, P. W., & Chung, D. D. L. (1996). Low-drying-shrinkage concrete containing carbon fibers. Composites Part B: Engineering, 27(3-4), 269-274. https://doi.org/10.1016/1359-8368(95)00020-8

Cui, H., Jin, Z., Zheng, D., Tang, W., Li, Y., Yun, Y., Lo, T., & Xing, F. (2018). Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites. Construction and Building Materials, 181, 713-720. https://doi.org/10.1016/j.conbuildmat.2018.06.049

Deskovic, N., Meier, U., & Triantafillou, T. C. (1995). Innovative design of FRP combined with concrete: long-term behavior. Journal of Structural Engineering, 121(7), 1079-1089. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1079)

Domski, J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.165

Eisa, A. S., Elshazli, M. T., & Nawar, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252, 119078. https://doi.org/10.1016/j.conbuildmat.2020.119078

Gailitis, R., Sliseris, J., Korniejenko, K., Mikuła, J., Łach, M., Pakrastins, L., & Sprince, A. (2020). Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite. Mechanics of Composite Materials, 56(1), 85-92. https://doi.org/10.1007/s11029-020-09862-w

Goertzen, W. K., & Kessler, M. R. (2006). Creep behavior of carbon fiber/epoxy matrix composites. Materials Science and Engineering: A, 421(1-2), 217-225. https://doi.org/10.1016/j.msea.2006.01.063

Granju, J. L., & Balouch, S. U. (2005). Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35(3), 572-577. https://doi.org/10.1016/j.cemconres.2004.06.032

Guerini, V., Conforti, A., Plizzari, G., & Kawashima, S. (2018). Influence of steel and macro-synthetic fibers on concrete properties. Fibers, 6(3), 47. https://doi.org/10.3390/fib6030047

Khadraoui, F. (2012). Creep and shrinkage behaviour of CFRP-reinforced mortar. Construction and Building Materials, 28(1), 282-286. https://doi.org/10.1016/j.conbuildmat.2011.07.048

Kim, G. M., Yoon, H. N., & Lee, H. K. (2018). Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Construction and Building Materials, 177, 428-435. https://doi.org/10.1016/j.conbuildmat.2018.05.127

Kromoser, B., Preinstorfer, P., & Kollegger, J. (2019). Building lightweight structures with carbon‐fiber‐reinforced polymer‐reinforced ultra‐high‐performance concrete: Research approach, construction materials, and conceptual design of three building components. Structural Concrete, 20(2), 730-744. https://doi.org/10.1002/suco.201700225

Mosavinejad, S. G., Langaroudi, M. A. M., Barandoust, J., & Ghanizadeh, A. (2020). Electrical and microstructural analysis of UHPC containing short PVA fibers. Construction and Building Materials, 235, 117448. https://doi.org/10.1016/j.conbuildmat.2019.117448

Liu, B., Liu, Z., Wang, X., Zhang, G., Long, S., & Yang, J. (2013). Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polymer testing, 32(4), 724-730. https://doi.org/10.1016/j.polymertesting.2013.03.020

Mousavi, S. M., Ranjbar, M. M., & Madandoust, R. (2019). Combined effects of steel fibers and water to cementitious materials ratio on the fracture behavior and brittleness of high strength concrete. Engineering Fracture Mechanics, 216, 106517. https://doi.org/10.1016/j.engfracmech.2019.106517

Park, S. B., & Lee, B. I. (1993). Mechanical properties of carbon-fiber-reinforced polymer-impregnated cement composites. Cement and Concrete Composites, 15(3), 153-163. https://doi.org/10.1016/0958-9465(93)90004-S

Park, S. B., Lee, B. I., & Lim, Y. S. (1991). Experimental study on the engineering properties of carbon fiber reinforced cement composites. Cement and concrete research, 21(4), 589-600. https://doi.org/10.1016/0008-8846(91)90110-4

Pujadas, P., Blanco, A., Cavalaro, S., De la Fuente, A., & Aguado, A. (2017). The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete. Construction and Building Materials, 149, 790-800. https://doi.org/10.1016/j.conbuildmat.2017.05.166

Pyo, S., Tafesse, M., Kim, H., & Kim, H. K. (2017). Effect of chloride content on mechanical properties of ultra high performance concrete. Cement and Concrete Composites, 84, 175-187. https://doi.org/10.1016/j.cemconcomp.2017.09.006

Raj, B., Sathyan, D., Madhavan, M. K., & Raj, A. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373. https://doi.org/10.1016/j.conbuildmat.2020.118373

Sadrinejad, I., Madandoust, R., & Ranjbar, M. M. (2018). The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials, 178, 72-82. https://doi.org/10.1016/j.conbuildmat.2018.05.145

Song, W., Yi, J., Wu, H., He, X., Song, Q., & Yin, J. (2019). Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag. Journal of Cleaner Production, 238, 117819. https://doi.org/10.1016/j.jclepro.2019.117819

Sun, M. Q., Li, J., Wang, Y. J., & Zhang, X. Y. (2015). Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat. Construction and Building Materials, 79, 283-289. https://doi.org/10.1016/j.conbuildmat.2015.01.060

Tang, S.; Huang, D., & He, Z. (2021). A review of autogenous shrinkage models of concrete, Journal of Building Engineering, 103412. https://doi.org/10.1016/j.jobe.2021.103412

Wang, Y., Zhang, S., Li, G., & Shi, X. (2019). Effects of alkali-treated recycled carbon fiber on the strength and free drying shrinkage of cementitious mortar. Journal of Cleaner Production, 228, 1187-1195. https://doi.org/10.1016/j.jclepro.2019.04.295

Wongtanakitcharoen, T., & Naaman, A. E. (2007). Unrestrained early age shrinkage of concrete with polypropylene, PVA, and carbon fibers. Materials and structures, 40(3), 289-300. https://doi.org/10.1617/s11527-006-9106-z

Yoo, D. Y., Gim, J. Y., & Chun, B. (2020a). Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete. Journal of Materials Research and Technology, 9(3), 3632-3648. https://doi.org/10.1016/j.jmrt.2020.01.101

Yoo, D. Y., Shin, W., & Chun, B. (2020b). Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers. Cement and Concrete Composites, 109, 103566. https://doi.org/10.1016/j.cemconcomp.2020.103566

Zhang, Y. Y., Sun, Z., Li, Y. Q., Huang, P., Chen, Q., & Fu, S. Y. (2021). Tensile creep behavior of short-carbon-fiber reinforced polyetherimide composites. Composites Part B: Engineering, 212, 108717. https://doi.org/10.1016/j.compositesb.2021.108717

Zhao, Q., Yu, J., Geng, G., Jiang, J., & Liu, X. (2016). Effect of fiber types on creep behavior of concrete. Construction and Building Materials, 105, 416-422. https://doi.org/10.1016/j.conbuildmat.2015.12.149

Published

10-12-2021

How to Cite

Farias, L. do N., & Aquino Rocha, J. H. (2021). Creep and shrinkage behavior of carbon fiber reinforced composites: a review. Journal Boliviano De Ciencias, 17(51), 110–134. https://doi.org/10.52428/20758944.v17i51.133

Issue

Section

Review Paper

Most read articles by the same author(s)