Evaluación experimental del comportamiento físico-mecánico del fibrocemento reforzado con pulpa de celulosa kraft mediante el proceso hatschek

Autores/as

DOI:

https://doi.org/10.52428/20758944.v21i57.1335

Palabras clave:

Fibrocemento, Pulpa de celulosa, Hatschek, Resistencia a la flexión, Kraft

Resumen

El estudio de materiales de construcción reforzados con elementos reciclables demuestra efectos positivos ante el impulso de una economía circular y el desarrollo de materiales amigables con el medio ambiente. Bajo este aspecto el presente artículo tiene por objetivo evaluar de forma experimental el comportamiento físico-mecánico del fibrocemento reforzado con pulpa de celulosa de cartón kraft. La metodología del trabajo se focalizó en la caracterización de los materiales, elaboración de cuerpos de prueba a través de las técnicas adaptadas para el proceso hatschek y la caracterización físico mecánico a los 7 y 28 días de edad. Los resultados demuestran que una matriz cementicia reforzada con pulpa de celulosa tratada presenta un mayor porcentaje de absorción de agua, en cuanto a la densidad aparente, estos no presentan una diferencia estadísticamente significativa con relación a la influencia de la edad y el tratamiento. Por parte de la respuesta de comportamiento mecánico (MOE y LOP) los valores indican que la aplicación de la pulpa de celulosa no tratada brinda un comportamiento más rígido, contrario a la pulpa tratada, que presenta ligeramente una mayor resistencia de carga a los 28 días (MOR). En conclusión, los cuerpos de fibrocemento elaborados a través del proceso hatschek y reforzados con un 2,5% de pulpa de celulosa tratada, resultan con un desempeño mecánico favorable; sin embargo, se observa un alto porcentaje de absorción, por lo que es necesario realizar más estudios para lograr un material aplicable dentro de la industria de la construcción.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akinyemi, A. B., Omoniyi, E. T., & Onuzulike, G. (2020). Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Construction and Building Materials, 245, 118405. DOI:

https://doi.org/10.1016/j.conbuildmat.2020.118405

Alshahrani, A., Kulasegaram, S., & Kundu, A. (2023). Elastic modulus of self-compacting fibre reinforced concrete: Experimental approach and multi-scale simulation. Case Studies in Construction Materials, 18, e01723. DOI: https://doi.org/10.1016/j.cscm.2022.e01723

Anandan, S., & Alsubih, M. (2023). Synergistic performance of steel-brass hybrid fibres on the concrete fracture properties. Journal of Engineering Research, 11(1), 100022. DOI:

https://doi.org/10.1016/j.jer.2023.100022

Arantes, L., Prazeres Mascarenhas, A. R., Scatolino, M. V., Denzin Tonoli, G. H., Mendes, L. M., Borges, I. O., & Guimarães Júnior, J. B. (2023). Pre-treatment with calcium hydroxide and accelerated carbonation for cellulosic pulp fibrillation. Nordic Pulp & Paper Research Journal, 38(2), 343-358. DOI: 10.1515/npprj-2022-0101Ferrara, L., Ferreira, S. R., Torre, M. D., Krelani, V., de Silva, F. A., & Filho, R. D. T. (2015). Effect of cellulose nanopulp on autogenous and drying shrinkage of cement based composites. In Nanotechnology in Construction: Proceedings of NICOM5 (pp. 325-330). Springer International Publishing. DOI:

https://doi.org/10.1007/978-3-319-17088-6_42

Ardanuy Raso, M., Claramunt Blanes, J., Arévalo Peces, R., Parés Sabatés, F., Aracri, E., & Vidal Lluciá, T. (2012). Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites. BioResources, 7(3), 3883-3894.

https://doi.org/10.15376/biores.7.3.3883-3894

ASTM, A. (2017). D790-17: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. West Conshohocken: ASTM International. DOI:

https://doi.org/10.1520/D0790-17

ASTM, A. (2023). C948-81: Standard test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete. West Conshohocken: ASTM International. DOI:

https://doi.org/10.1520/C0948-81R23

Ballesteros, J. E. M., Mármol, G., Filomeno, R., Rodier, L., Savastano Jr, H., & Fiorelli, J. (2019). Synergic effect of fiber and matrix treatments for vegetable fiber reinforced cement of improved performance. Construction and Building Materials, 205, 52-60. DOI:

https://doi.org/10.1016/j.conbuildmat.2019.02.007

Booya, E., Ghaednia, H., Das, S., & Pande, H. (2018). Durability of cementitious materials reinforced with various Kraft pulp fibers. Construction and Building Materials, 191, 1191-1200. DOI:

https://doi.org/10.1016/j.conbuildmat.2018.10.139

Borges, I. O., Setter, C., de Menezes, R. C. C., Silva, D. W., Casagrande, N. B., Scatolino, M. V., ... & Tonoli, G. H. D. (2024). Effect of the modification of Pinus Kraft pulp with aluminum sulfate in cementitious composites. European Journal of Wood and Wood Products, 82(5), 1551-1566. DOI:

https://doi.org/10.1007/s00107-024-02109-8

Bui, H., Sebaibi, N., Boutouil, M., & Levacher, D. (2020). Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers, 8(6), 37. DOI:

https://doi.org/10.3390/fib8060037

Cao, Y., Tian, N., Bahr, D., Zavattieri, P. D., Youngblood, J., Moon, R. J., & Weiss, J. (2016). The influence of cellulose nanocrystals on the microstructure of cement paste. Cement and Concrete Composites, 74, 164-173. DOI:

https://doi.org/10.1016/j.cemconcomp.2016.09.008

Chen, Y., He, Q., Liang, X., Jiang, R., & Li, H. (2022). Experimental investigation on mechanical properties of glass fiber reinforced recycled aggregate concrete under uniaxial cyclic compression. Cleaner Materials, 6, 100164. DOI:

https://doi.org/10.1016/j.clema.2022.100164

Cui, K., Xu, L., Li, L., & Chi, Y. (2023). Mechanical performance of steel-polypropylene hybrid fiber reinforced concrete subject to uniaxial constant-amplitude cyclic compression: Fatigue behavior and unified fatigue equation. Composite Structures, 311, 116795. DOI:

https://doi.org/10.1016/j.compstruct.2023.116795

Ferreira, S. R., Silva, L. E., McCaffrey, Z., Ballschmiede, C., & Koenders, E. (2021). Effect of elevated temperature on sisal fibers degradation and its interface to cement based systems. Construction and Building Materials, 272, 121613. DOI:

https://doi.org/10.1016/j.conbuildmat.2020.121613

Gong, L., Yu, X., Liang, Y., Gong, X., & Du, Q. (2023). Multi-scale deterioration and microstructure of polypropylene fiber concrete by salt freezing. Case Studies in Construction Materials, 18, e01762. DOI:

https://doi.org/10.1016/j.cscm.2022.e01762

Hamada, H. M., Shi, J., Al Jawahery, M. S., Majdi, A., Yousif, S. T., & Kaplan, G. (2023). Application of natural fibres in cement concrete: A critical review. Materials Today Communications, 105833. DOI:

https://doi.org/10.1016/j.mtcomm.2023.105833

Hisseine, O. A., Omran, A. F., & Tagnit-Hamou, A. (2018). Influence of cellulose filaments on cement paste and concrete. Journal of materials in civil engineering, 30(6), 04018109. DOI:

https://doi.org/10.1061/(ASCE)MT.1943-5533.0002287

Jianbing, Y., Yufeng, X., Saijie, L., & Zhiqiang, X. (2022). Experimental study on shear performance of basalt fiber concrete beams without web reinforcement. Case Studies in Construction Materials, 17, e01602. DOI:

https://doi.org/10.1016/j.cscm.2022.e01602

Kouta, N., Saliba, J., & Saiyouri, N. (2020). Effect of flax fibers on early age shrinkage and cracking of earth concrete. Construction and Building Materials, 254, 119315. DOI:

https://doi.org/10.1016/j.conbuildmat.2020.119315

Li, Y., Wang, Q., Xu, S., & Song, Q. (2023). Study of eco-friendly fabricated hydrophobic concrete containing basalt fiber with good durability. Journal of Building Engineering, 65, 105759. DOI:

https://doi.org/10.1016/j.jobe.2022.105759

Mármol, G., & Savastano Jr, H. (2017). Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cement and Concrete Composites, 80, 258-267. DOI:

https://doi.org/10.1016/j.cemconcomp.2017.03.015

Mejia-Ballesteros, J. E., Rodier, L., Filomeno, R., Savastano Jr, H., Fiorelli, J., & Rojas, M. F. (2023). Effect of activated coal waste and treated Pinus fibers on the physico-mechanical properties and durability of fibercement composites. Construction and Building Materials, 392, 132038. DOI:

https://doi.org/10.1016/j.conbuildmat.2023.132038

Mohammadkazemi, F., Aguiar, R., & Cordeiro, N. (2017). Improvement of bagasse fiber-cement composites by addition of bacterial nanocellulose: an inverse gas chromatography study. Cellulose, 24, 1803-1814. DOI:

https://doi.org/10.1007/s10570-017-1210-4

Moreira, T. N. D. C., Krelani, V., Ferreira, S. R., Ferrara, L., & Toledo Filho, R. D. (2022). Self-healing of slag-cement ultra-high performance steel fiber reinforced concrete (UHPFRC) containing sisal fibers as healing conveyor. Journal of Building Engineering, 54, 104638. DOI:

https://doi.org/10.1016/j.jobe.2022.104638

Raut, A. N., & Gomez, C. P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 126, 476-483. DOI:

https://doi.org/10.1016/j.conbuildmat.2016.09.034

Rocha, J. H. A., & Toledo Filho, R. D. (2023). The utilization of recycled concrete powder as supplementary cementitious material in cement-based materials: A systematic literature review. Journal of Building Engineering, 76, 107319. DOI:

https://doi.org/10.1016/j.jobe.2023.107319

Rosas, M. H., Chileno, N. G. C., Campos, A. A., & Rocha, J. H. A. (2023). Analysis of concrete mechanical properties when adding type-E glass fibers. Journal of Building Pathology and Rehabilitation, 8(1), 40. DOI:

https://doi.org/10.1007/s41024-023-00289-z

Santos, E. B. C., Moreno, C. G., Barros, J. J. P., Moura, D. A. D., Fim, F. D. C., Ries, A., ... & Silva, L. B. D. (2018). Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers. Materials Research, 21, e20170365. DOI:

https://doi.org/10.1590/1980-5373-mr-2017-0365

Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and concrete Research, 114, 2-26. DOI:

https://doi.org/10.1016/j.cemconres.2018.03.015

Singh, H., & Gupta, R. (2020). Influence of cellulose fiber addition on self-healing and water permeability of concrete. Case Studies in Construction Materials, 12, e00324. DOI:

https://doi.org/10.1016/j.cscm.2019.e00324

Taiwo, A. S., Ayre, D. S., Khorami, M., & Rahatekar, S. S. (2024). Optimizing the Mechanical Properties of Cement Composite Boards Reinforced with Cellulose Pulp and Bamboo Fibers for Building Applications in Low-Cost Housing Estates. Materials, 17(3), 646. DOI:

https://doi.org/10.3390/ma17030646

PMid:38591442 PMCid:PMC10856262

Tonoli, G. H. D., Joaquim, A. P., Arsène, M. A., Bilba, K., & Savastano Jr, H. (2007). Performance and durability of cement based composites reinforced with refined sisal pulp. Materials and Manufacturing Processes, 22(2), 149-156. DOI:

https://doi.org/10.1080/10426910601062065

Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659-672. DOI:

https://doi.org/10.1016/j.conbuildmat.2018.06.075

Zakaria, M., Ahmed, M., Hoque, M., & Shaid, A. (2018). A comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. Journal of Natural Fibers. DOI:

https://doi.org/10.1080/15440478.2018.1525465

Zhang, D., Tan, G. Y., & Tan, K. H. (2021). Combined effect of flax fibers and steel fibers on spalling resistance of ultra-high performance concrete at high temperature. Cement and Concrete Composites, 121, 104067. DOI:

https://doi.org/10.1016/j.cemconcomp.2021.104067

Descargas

Publicado

30-06-2025

Cómo citar

Cayo Chileno, N. G., Dutra Carneiro, D., Joaquim Assane , L. M., de Fátima Souza , B., Sales Satiro , J., Aparecida Pereira, M., Defáveri do Carmo e Silva , K., & Rocha Ferreira, S. (2025). Evaluación experimental del comportamiento físico-mecánico del fibrocemento reforzado con pulpa de celulosa kraft mediante el proceso hatschek. Journal Boliviano De Ciencias, 21(57), 49–63. https://doi.org/10.52428/20758944.v21i57.1335

Número

Sección

Artículos Científicos

Artículos más leídos del mismo autor/a