Effects of Sublethal Treatments on the Variability of the Lag Phases in Salmonella Enterica Serovar Enteritidis and Listeria Innocu.

Authors

  • María Rosa Rodríguez Vargas
  • Juan Salvador Aguirre García

DOI:

https://doi.org/10.52428/20756208.v13i37.318

Keywords:

Variability, Sublethal treatments, Lag phase, Poisson distribution, Individual cells

Abstract

This research work studied the variability of the lag phase in individual Salmonella enterica serovar Enteritidis and Listeria innocua cells after receiving inactivating acidification, irradiation and heat treatments. Once the protocol of experimental trials has been established; Bioscreen previously determined: the number of bacteria that generate a turbidity of 0,20 optical density, the detection time and the specific maximum growth rate; data indicating the lag phases in experimental conditions. However, to further refine the estimation of cells number per well and then calculate the lag phase of individual cells. Two strategies were proposed: 1) that all the growing samples contained a cell; 2) than a certain number of samples will contain one, two or more cells. So, if there are two, three or n viable cells, the lag phase of the population will be gradually shorter and, hopefully, less variable. The analyzed data concluded that the variability of the microorganisms under study increases when the growth substrate of the microorganism is more complex and when the growth temperature moves away from the optimum. From the lag phase point of view acidification is the most variable, instead irradiation is an excellent alternative to thermal treatment because, both for inactivation and for the lag phase of irradiated surviving microorganisms the results are more homogeneous and less variable.

Downloads

Download data is not yet available.

References

MCMEEKIN, T.A., AND ROSS, T. Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology. 2002; 78: 133-153. https://doi.org/10.1016/S0168-1605(02)00231-3

BARBOSA-CÁNOVAS, G., AND BERMÚDEZ-AGUIRRE, D. Nonthermal Processing of Food. Scientia Agropecuaria 2010; 1: 81-93. https://doi.org/10.17268/sci.agropecu.2010.01.08

ADAMS, M.R., AND MOSS, M.O. Food Microbiology Third Edition. University of Surrey, Guildford, UK. Publishing Royal Society of Chemistry. 2008.

MAÑAS, P. Inactivación microbiana para nuevas tecnologías de conservación de los alimentos. Avances en microbiología de los alimentos. Editora Elena Gonzáles-Fandos. Logroño: Universidad de la Rioja. 2012. p. 55-60.

MACKEY, B.M. En: The microbial safety and quality of foods. Vol 1. ed. Lund, B.M., Baird-Parker, T.C., Gould, G.W. Aspen Publishers, Inc., Gaithersburg. 2000. p. 331-341

DELIGNETTE-MULLER, M.L., ROSSO, L. Biological variability and exposure assessment. International Journal of Food Microbiology. 2000; 58 (3): 203-12. https://doi.org/10.1016/S0168-1605(00)00274-9

VAN BOEKEL, M.A. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology. 2002; 74: 139-159. https://doi.org/10.1016/S0168-1605(01)00742-5

KOUTSOUMANIS, K. A study on the variability in the growth limits of individual cells and its effect on the behaviour of microbial populations. International Journal of Food Microbiology. 2008; 128 (1): 116-21. https://doi.org/10.1016/j.ijfoodmicro.2008.07.013

AGUIRRE, J.S., RODRIGUEZ, M.R., AND GARCÍA DE FERNANDO, G.D. Analysis of the variability in the number of viable bacteria after mild heat treatment of food. Applied and Environmental Microbiology. 2009; 75 (22): pp. 6992-6997. https://doi.org/10.1128/AEM.00452-09

AGUIRRE, J.S., RODRIGUEZ, M.R., AND GARCÍA DE FERNANDO, G.D. Effects of electron beam irradiation on the variability in survivor number and duration of lag phase of four food-borne organisms. International Journal of Food Microbiology. 2011; 149 (3): 236-246. https://doi.org/10.1016/j.ijfoodmicro.2011.07.003

RODRIGUEZ, MARIA R., AGUIRRE, JUAN S., LIANOU, ALEXANDRA., PARRA-FLORES, JULIO., GARCÍA DE FERNANDO, GONZALO. Analysis of the variability in microbial inactivation by acid treatments. LWT - Food Science and Technology. 2016; 66: 369-377. https://doi.org/10.1016/j.lwt.2015.10.056

FRANCOIS, K., DEVLIEGHERE, F., STANDAERT, A.R., GEERAERD, A.H., VAN IMPE., J.F., Y DEBEVERE, J. Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes. In Predictive Modelling in Food- Conference Proceedings. Kattholieke Universiteit Leuven/BioTec, Belgium: In: Van Impe, J. F.M., Geeraerd, A.H., Leguérine, I. 2003.

ROBINSON, T.P., OCIO, M.J., KALOTI, A., MACKEY, B.M. The effect of the growth environment on the lag phase of Listeria monocytogenes. International Journal of Food Microbiology. 1998; 44 (1-2): 83-92 https://doi.org/10.1016/S0168-1605(98)00120-2

BUCHANAN, R.L., KLAWITTER, L.A. Effect of temperature history on the growth of Listeria monocytogenes. Scott A at refrigeration temperatures. International Journal of Food Microbiology. 1991; Feb; 12 (2-3): 235-245. https://doi.org/10.1016/0168-1605(91)90074-Y

AGUIRRE, J.S., MONIS, A., AND GARCÍA DE FERNANDO, G.D. Improvement in the lag phase estimation of individual cells that have survived mild heat treatment. International Journal of Food Science & Technology. 2013; 49 (3): 884-894. https://doi.org/10.1111/ijfs.12382

AGUIRRE, J., BRAVO, C., ORDÓÑEZ, J.A., GARCÍA DE FERNANDO, G. The Poisson distribution is applied to improve the estimation of individual cell and micropopulation lag phases. Advances in Microbiology. 2012; Vol. 2 No. 2, 146-161. https://doi.org/10.4236/aim.2012.22020

HOLM, S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics. 1979; 6: 65-70.

PRESCOTT, L.M., HARLEY, J.P., KLEIN, D.A. Microbiología. 4a Edición. McGraw-Hill. Interamericana. 1999. p. 114 - 136.

KOUTSOUMANIS, K.P., SOFOS, J.N. Comparative acid stress response of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium after habituation at different pH conditions. Letters in Applied Microbiology. 2004; 38 (4): 321-6. https://doi.org/10.1111/j.1472-765X.2004.01491.x

MÉTRIS, A., GEORGE. S., BARANYI, J., PECK, M.W., BARANYI, J. Distribution of turbidity detection times produced by single cell-generated bacterial populations. Journal Microbiological Methods. 2003; Dec.; 55 (3): 82. https://doi.org/10.1016/j.mimet.2003.08.006

Published

2019-12-31

How to Cite

Rodríguez Vargas , M. R. ., & Aguirre García, J. S. . (2019). Effects of Sublethal Treatments on the Variability of the Lag Phases in Salmonella Enterica Serovar Enteritidis and Listeria Innocu. Revista De Investigación E Información En Salud, 13(37), 31–48. https://doi.org/10.52428/20756208.v13i37.318

Issue

Section

Artículos Originales

Most read articles by the same author(s)