Sliding Mode Control to Position Control of Magnetic Levitation System.

Authors

  • Raúl Roque Yujra
  • Francisco J. Triveño Vargas

DOI:

https://doi.org/10.52428/20758944.v16i49.356

Keywords:

Chattering, Control by sliding modes, Magnetic Levitation System, State estimator

Abstract

This article proposes a control law for a magnetic levitation system using the sliding modes technique based on differential geometry. The purpose of this controller design is the regulation of the sphere position. This control law includes a state observer-type speed estimator, this in order to have the presence of all the states of the system, fulfilling the presence requirement of the complete state. Results of evaluation of the control validity law designed for the magnetic levitation system are shown through the execution of several simulations.

Downloads

Download data is not yet available.

References

Barie, W., Chiasson, J. (1996). Linear and Nonlinear state-space controller of Magnetic Levitation. International Journal of Systems Science, 7(11), 1153-1163. https://doi.org/10.1080/00207729608929322 DOI: https://doi.org/10.1080/00207729608929322

Cirera, E. A. (2000). Control de Estructura Variable: Eliminación de Chattering. Arandú Revista Virtual 2000. Recuperado de: http://arandu.org.ar/pub/cirera3.pdf

Gentili, L. y Marconi, L. (2000). Robust Nonlinear regulation for Magnetic Levitation Systems. Dipartimento de Electronica Informatica e Sistemistica, University of Bologna.

Isidori, A. (1995). Nonlinear Control Systems. Tercera edición. Springer. https://doi.org/10.1007/978-1-84628-615-5 DOI: https://doi.org/10.1007/978-1-84628-615-5

Khalil, H. (2002). Nonlinear Systems, 3rd edition, Prentice Hall.

Joo, S. y Jin S. (1997). Desing and Analysis of the Nonlinear Feedback Linearizing Control for an Electromagnetic Suspension Systems. IEEE Transaction on control Systems Technology, 5(1), 135-144. https://doi.org/10.1109/87.553672 DOI: https://doi.org/10.1109/87.553672

Llanes, O. (1994), Control Discontinuo de Sistemas No Lineales. Tesis de Doctorado de presentado, Universidad de Los Andes, Venezuela.

Muthairi, N., Zribi, M., Sliding Mode Control of a Magnetic Levitation systems. Mathematical Problems in Enginnering 2004. February 2004. https://doi.org/10.1155/S1024123X04310033 DOI: https://doi.org/10.1155/S1024123X04310033

Sira-Ramirez, H., Marquez, R., Rivas, F. y Llanes, O. (2005). Control de Sistemas no Linelaes: Linealización aproximada, extendida, exacta. Serie Automática Robotica, Pearson Prentice Hall.

Slotine, J. y Li, W. (1991). Applied Nonlinear Control. Prentice Hall.

Sastry, S. (1999). Nonlinear Systems: Analysis, Stability and Control. Spinger-Verlag New York, Inc.

Utkin, V.I., Guldner, J. y Shi, J. (1999). Sliding mode control in electro-mechanical systems, Taylor&Francis, London.

Xu, H. y Mirmirani, M. (2001). Robust Adaptive Sliding Control of Linearizable Systems. Proceedings of the American Control Conference, Arlington. https://doi.org/10.2514/6.2001-4168 DOI: https://doi.org/10.2514/6.2001-4168

Yang, Z. y Minashima, M. (2001). Robust Nonlinear Control of a Feedback Linearizable VoltageControlled Magnetic Levitation Systems. IEEJ Transactions on Electronics Information and Systems, 121(7), 1203-1211. https://doi.org/10.1541/ieejeiss1987.121.7_1203 DOI: https://doi.org/10.1541/ieejeiss1987.121.7_1203

Published

31-12-2020

How to Cite

Roque Yujra , R. ., & Triveño Vargas, F. J. . (2020). Sliding Mode Control to Position Control of Magnetic Levitation System. Journal Boliviano De Ciencias, 16(49), 59–73. https://doi.org/10.52428/20758944.v16i49.356

Issue

Section

Scientific Paper

Most read articles by the same author(s)