EVALUACIÓN DE LA PRECISIÓN EN EL PRONÓSTICO DE LA INFLACIÓN EN BOLIVIA: RANDOM FOREST Y ÁRBOLES DE DECISIÓN VS. ARIMA

Authors

  • JOSE ANTONIO ZURITA HERRERA UNIVERSIDAD PRIVADA DEL VALLE

DOI:

https://doi.org/10.52428/20758960.v15i39.1227

Keywords:

Inflation Forecasting, Machine Learning, Random Forest, Decision Tree, ARIMA Model, Bolivia

Abstract

This study compares IPC forecasting models in Bolivia, evaluating traditional and machine learning approaches for inflation prediction. Decision Tree, Pruned Tree, Random Forest, and ARIMA models were applied, finding that machine learning models, particularly the Pruned Tree, outperform ARIMA in accuracy, achieving a lower RMSE in the test set. This suggests that modern models better capture the complex dynamics of the IPC and represent more robust tools for inflation projection in emerging economies. The study recommends exploring hybrid models and advanced neural networks in future research to further optimize forecasts.

Downloads

Download data is not yet available.

References

Banco Central Europeo. (2023). Quantile Regression Forests for Inflation Prediction in the Eurozone: Short-Term Adaptability in Forecasts. Banco Central Europeo.

Bojanic, A. N. (2021). A Markov-Switching Model of Inflation in Bolivia. Economies. DOI: https://doi.org/10.3390/economies9010037

Box, G. E., & Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. Holden-Day.

Bratu, M., & Nicula, A. S. (2024). Sentiment analysis as an innovation in inflation forecasting in Romania. Marketing i menedžment innovacij, 15(2), 13-25. DOI: https://doi.org/10.21272/mmi.2024.2-02

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. DOI: https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and Regression Trees. Chapman and Hall/CRC.

Carmona Rodríguez, C. S., & López Sánchez, A. (2021). Revisión de implementación de modelo de Random Forest en los últimos años. Universidad Pontificia Bolivariana.

Diaf, S., & Schütze, F. (2024). Economic forecasting with non-specific Google Trends sentiments Insights from US Data. 6th International Conference on Advanced Research Methods and Analytics (págs. 10-17). Valencia: Universidad Politécnica de Valencia. DOI: https://doi.org/10.4995/CARMA2024.2024.17783

Espinosa, & Zúñiga. (2020). Aplicación de algoritmos Random Forest y XGBoost en la predicción de la inflación en México. Ingeniería, Investigación y Tecnología, 1-16. DOI: https://doi.org/10.22201/fi.25940732e.2020.21.3.022

Forte, A. (Septiembre de 2024). Inflación de corto plazo con random forest (Documento de trabajo No. 24/10). BBVA Research. Obtenido de file:///D:/Courses%20taken/Pron%C3%B3sticos%20Macro%20Fin/Modulo%205.%20Taller%20de%20investigacion/Papers/A.%20Random-forest%20Argentina.pdf

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. DOI: https://doi.org/10.1007/978-0-387-84858-7

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. . OTexts.

Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning models. Journal of Business & Economic Statistics, 39(1), 98-119. DOI: https://doi.org/10.1080/07350015.2019.1637745

Medina Merino, R. F., & Ñique Chacón, C. I. (2017). Bosques aleatorios como extensión de los árboles de clasificación para la predicción de la inflación en Perú. Inter Fases, 10, 165-180. DOI: https://doi.org/10.26439/interfases2017.n10.1775

Meuller, S. (2022). Improving Inflation Forecast Accuracy with Random Forest Models. Universidad de Lund, Departamento de Economía.

Moyo, T., & Musengezi, J. (2022). Utilizing decision trees and random forests for inflation forecasting in African economies. . Journal of Economic Forecasting, 58(3), 345-359.

Patton, A. J., & Simsek, Y. (2023). Generalized autoregressive score trees and forests in economic predictions. International Journal of Forecasting, 41(4), 221-238. . DOI: https://doi.org/10.2139/ssrn.4459756

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Quinlan, J. R. (1986). Induction of Decision Trees. . Machine Learning., 1(1), 81-106. DOI: https://doi.org/10.1007/BF00116251

Silva, R. F., & Oliveira, M. A. (2019). Uso de Random Forest para la predicción de la inflación en Brasil. Revista Brasileira de Agroinformática, 15(2), 45-58.

Zhao, L., & Zhang, X. (2019). A Comparison of ARIMA and LSTM in Forecasting Time Series. IEEE Xplore.

Zhou, S., & Mentch, L. (2023). Trees, forests, and optimal pruning techniques in inflation forec

Published

2024-12-19

How to Cite

ZURITA HERRERA, J. A. (2024). EVALUACIÓN DE LA PRECISIÓN EN EL PRONÓSTICO DE LA INFLACIÓN EN BOLIVIA: RANDOM FOREST Y ÁRBOLES DE DECISIÓN VS. ARIMA. Revista Compás Empresarial, 15(39), 52–80. https://doi.org/10.52428/20758960.v15i39.1227