Polyepoxide: Relevance and Benefits.
DOI:
https://doi.org/10.52428/20758944.v16i49.353Keywords:
Biocompatibility, Biomedical, Curing, Epoxy resin, ThermosetAbstract
Nowadays, thanks to the evolution of technology, we can recognize bioengineering as an area that has shown great discoveries in the medical and technological fields, for the design and creation of devices, diagnostic equipment, prosthetics, biocompatibl substitutes for therapeutic purposes, such as repair and replacement of a function or an organism part.
This paper compiles information through bibliographic review, which reveals the properties, advantages, uses and applications of epoxy resins, in order to provide different solutions through this new alternative to improve the quality of people’s life. Recognizing its thermostability and biocompatibility as the most important characteristics. The advantages of these resins are the effective adhesion and excellent moisture that they have compared to other materials.
Biomedical applications have a better response to the combination with carbon fiber. This research work developed two of the existing biomedical applications, such as: tissue engineering that refers to a bioactive composition obtained by an electrospray procedure that comprises a thermoset polymer. On the other hand, it is applied to dental models that have good dimensional stability and a better ability to reproduce fine details. We expect that this work can give way to future implementations, in order to provide different solutions through this new alternative and thus improve people's life quality.
Downloads
References
Alandia Roman, C.C., Rodrigues Cruvinel, D. (2014). Evaluación de una Resina Epóxica experimental como material alternativo para obtención de modelos odontológicos. Acta Odontológica Venezolana. Universidad Central de Venezuela. Recuperado de: https://www.actaodontologica.com/ediciones/2014/3/art-11/
Almeida-Galarraga, D., Ros-Felip, A., Serrano-Mateo, L., Marco-Martinez, F. (2017). Estudio de deformaciones en la articulación del hombro con técnicas experimentales optomecánicas. Congreso Anual de Sociedad Española de Ingeniería Biomédica. Recuperado de: http://oa.upm.es/51692/1/INVE_MEM_2017_280731.pdf
Balbín Tamayo, A.I., López Riso, L.S., Esteva Guas, A.M., Blanco de Armas, M. (2019). Nuevo electrodo epoxi-grafito para la detección de ADN. Aplicación en la detección del VIH-1. Anales de la Academia de Ciencias de Cuba. Departamento de Química Analítica Facultad de Química. Universidad de La Habana, Cuba. Recuperado de: http://www.revistaccuba.sld.cu/index.php/revacc/article/view/728/0
Esdras-Juárez D.A. (2012). Análisis y evaluación de propiedades térmicas y mecánicas de materiales resínicos del tipo Epoxi/Amina [tesis de especialización en química aplicada Opción Análisis y Evaluaciónde Polímeros, Centro de especialización en Química Aplicada.] Saltillo, Coahuila. Recuperado de: https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/361/1/Esdras%20David%20Juarez%20Alonzo.pdf
Gimeno-Alcañiz, J. V. y Ocio, M.J., Torres-Giner, S., Lagarón-Cabello, J. M. (2011). Desarrollo de recubrimientos electroestirados bioactivos para aplicaciones biomédicas. Digital.CSIC. Recuperado de https://digital.csic.es/handle/10261/41451
Gonzáles, S. (2006). Obtención de nuevas redes termoestables a partir de una resina epoxi modificada con grupos éster [tesis de maestría, Universidad Politécnica de Catalunya]. BarcelonaTech. Recuperado de: https://upcommons.upc.edu/bitstream/handle/2099.1/10749/memoria.pdf?sequence=1&isAllowed=y
Lascano, D., Valcárcel, J. Baker, R., Quiles-Carrillo, L., Boronat, T. (2020). Fabricación de materiales compuestos de alto rendimiento medioambiental con resina epoxi de origen renovable y núcleos ligeros permeables para infusión asistida por vacío. Ingenius Revista de Ciencia y Tecnología. Recuperado de: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-860X2020000100062
Navarro-Tovar A. G. (2013). Desarrollo de un sistema fotocurable epoxi-amina/tiol- ene Amina [tesis de maestría en tecnología de polímeros, Centro de especialización en Química Aplicada]. Saltillo, Coahuila. Recuperado de: https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/26/1/Tesis%20MTP%20Ana%20Gabriela%20Navarro%20Tovar%20Jul%2015%202014.pdf
Osorio-Delgado, M. A., Henao-Tamayo, L. J., Velásquez-Cock, J. A., Cañas- Gutiérrez, A. I., RestrepoMúnera, L. M., Gañán-Rojo, P. F., Zuluaga-Gallego, R. O., Ortiz-Trujillo, I C. y Castro-Herazo, C. I. (2017). Aplicaciones biomédicas de biomateriales poliméricos. DYNA, 84(201), 241-252. https://doi.org/10.15446/dyna.v84n201.60466 DOI: https://doi.org/10.15446/dyna.v84n201.60466
Remesar, A. (2015). Fabricación Digital: entre el DiY (Do it yourself) y una nueva Revolución Industrial. OBS Business School. Escuela de negocios online Barcelona. Recuperado de: https://universoabierto.org/2020/01/03/fabricacion-digital-entre-el- do-it-yourself-y-una-nueva-revolucion-industrial-obs/
Renou, S. Collet, A. Piloni, M. Steimetz, T. Sival, M. Navarro, V. (2010). Biomateriales para implantes intraóseos: Contribución y desafío en el área biomédica. Cátedra de Anatomía Patológica. Facultad de
Odontología. Universidad de Buenos Aires. Recuperado de: https://ri.conicet.gov.ar/bitstream/handle/11336/15281/CONICET_Digital_Nro.17536.pdf?sequence=1&isAllowed=y
Siqueiros Hernandez, M., Reyna Carranza, M., Nuño, V., Huegel, West J., Castañeda, A. (2018). Metodología para la fabricación de una prótesis transtibial a base de material compuesto de fibra de carbono y resina epóxica. Matéria Rio de Janeiro. Cidade Universitaria de Brasil. https://doi.org/10.1590/s1517-707620180002.0482 DOI: https://doi.org/10.1590/s1517-707620180002.0482
Vera-Lázaro, A., Aguilar, D., Campos, J., Campos, J., Carrasco, A., Jaime, H. (2020). Comparación estática estructural y de pandeo de dos materiales compuestos y acero inoxidable en una prótesis de miembro inferior. Universidad Católica Santo Toribio de Mogrovejo. Recuperado de: https://www.researchgate.net/profile/Alejandro_Vera-Lazaro/publication/343961307_COMPARACION_ESTATICA_ESTRUCTURAL_Y_DE_PANDEO_DE_DOS_MATERIALES_COMPUESTOS_Y_ACERO_INOXIDABLE_EN_UNA_PROTESIS_DE_MIEMBRO_INFERIOR_STRUCTURAL_STATIC_AND_BUCKLING_COMPARISON_OF_TWO_COMPOUND_MATERIALS_AND/links/5f49e967299bf13c504e978e/COMPARACION-ESTATICA-ESTRUCTURAL-Y-DE-PANDEO-DE-DOS-MATERIALES-COMPUESTOSY-ACERO-INOXIDABLE-EN-UNA-PROTESIS-DE-MIEMBRO-INFERIOR-STRUCTURAL-STATIC-ANDBUCKLING-COMPARISON-OF-TWO-COMPOUND-MATERIALS-AND.pdfCOMPOUND-MATERIALS-AND.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Alejandra Marcia Ayala Allende, Nicole Cartagena Siles , Andrea Betina Villarpando Quaglini, Mikaela Pantoja Rocabado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.