Carbon footprint estimation of fish farming: A case study in Mariposas, Puerto Villarroel, Cochabamba

Authors

  • María Celeste Marka Añez Universidad Privada Boliviana
  • Miguel Fernández Vázquez Independent consultant

DOI:

https://doi.org/10.52428/20758944.v21i58.1390

Keywords:

Carbon footprint, Fish farming, CO₂ emissions, clean energy, Environmental sustainability

Abstract

The objective of this study was to estimate the carbon footprint generated during the production stage in a representative fish farming system of the Cochabamba tropics, specifically in the community of Mariposas, municipality of Puerto Villarroel. An adaptation of the ISO 14064-1:2006 standard was applied to quantify greenhouse gas (GHG) emissions, focusing on three key areas: solid waste (sludge), balanced feed, and energy consumption. The methodology included on-site data collection, interviews with producers, and process analysis. The results showed that sludge was the main source of emissions (2.8 kg CO₂eq/m²), followed by balanced feed (2.43 kg CO₂eq/m²) and energy use (0.23 kg CO₂eq/m² with oxygenators). It was concluded that the incorporation of clean technologies, such as solar-powered automatic oxygenators, can significantly reduce the environmental impact. This study provides a technical foundation for future research and the formulation of public policies aimed at sustainable aquaculture in Bolivia.

Downloads

Download data is not yet available.

References

Bennardi, D. O. (2020). Digestión anaeróbica: Obtención de biogás.

Bhatia, A. (2014). Biogas production. In History, feedstock and principle of anaerobic digestion. Springer. https://doi.org/10.1007/978-3-319-13523-3

Boyd, C. E. (2022, January 2). Tasa de conversión alimenticia y los beneficios de reducirla. Global Seafood Alliance. https://www.globalseafood.org/advocate/un-bajo-indice-de-conversion-alimenticia-es-el-principal-indicador-de-una-acuacultura-eficiente/

Comité Nacional de Despacho de Carga. (2022). Cálculo del factor de emisión de CO₂ del Sistema Interconectado Nacional: Gestión 2021. CNDC.

Food and Agriculture Organization of the United Nations. (2009). Consecuencias del cambio climático para la pesca y la acuicultura. FAO. https://www.fao.org/3/i0994s/i0994s.pdf

Food and Agriculture Organization of the United Nations. (2013). Enfrentando el cambio climático a través de la ganadería: Una evaluación global de las emisiones y oportunidades de mitigación (P. J. Gerber et al., Eds.). FAO. https://www.fao.org/4/i3437s/i3437s.pdf

Food and Agriculture Organization of the United Nations. (2024). El estado mundial de la pesca y la acuicultura 2024. FAO. https://www.fao.org/publications/fao-flagship-publications/the-state-of-world-fisheries-and-aquaculture/es

Instituto para la Diversificación y Ahorro de la Energía. (2007). Biomasa: Digestores anaerobios. IDAE. https://www.idae.es/uploads/documentos/documentos_10737_Biomasa_Digestores_Anaerobios_A2007_0d62926d.pdf

Instituto Nacional de Ecología y Cambio Climático. (n.d.). Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. http://www.inecc.gob.mx

Intergovernmental Panel on Climate Change, & U.S. Environmental Protection Agency. (1990). Emisiones globales de metano antropogénico (Figura 3) y global mitigation of non-CO₂ greenhouse gases. https://www.epa.gov/climatechange/economics/international.html

International Organization for Standardization. (s. f.). ISO Online Browsing Platform (OBP). https://www.iso.org/obp/ui

Ladino-Orjuela, G. (2011). Dinámica del carbono en estanques de peces. Orinoquia, 15(1), 48-61. https://www.redalyc.org/pdf/896/89621344006.pdf

https://doi.org/10.22579/20112629.42

Luna Imbacuan, M. A. (2011). Efluentes piscícolas: Características contaminantes, impactos y perspectivas de tratamiento. Journal de Ciencia e Ingeniería, 3(1), 12-15. https://jci.uniautonoma.edu.co/2011/2011-2.pdf

Ministerio de Planificación del Desarrollo. (2021). Plan de Desarrollo Económico y Social (PDES) 2021-2025.

Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. Science, 360(6392), 987-992. https://doi.org/10.1126/science.aaq0216 PMid:29853680

Servicio Agrícola y Ganadero. (2009). Guía de aplicación de lodos de piscicultura en suelos. Gobierno de Chile. https://www.sag.gob.cl/sites/default/files/Guia%20Piscicultura_2009.pdf

Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. L. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). McGraw-Hill Education.

Vásquez Torres, W. (n.d.). Las dietas como factor de impacto sobre la calidad del agua en sistemas de cultivo intensivo de peces. https://revistas.udenar.edu.co/index.php/reipa/article/view/1662

Werkneh, A. A. (2022). Biogas impurities: Environmental and health implications, removal technologies and future perspectives. Heliyon, 8(10), e10929. https://doi.org/10.1016/j.heliyon.2022.e10929 PMid:36299513 PMCid:PMC9589174

Published

30-12-2025

How to Cite

Marka Añez, M. C., & Fernández Vázquez, M. (2025). Carbon footprint estimation of fish farming: A case study in Mariposas, Puerto Villarroel, Cochabamba. Journal Boliviano De Ciencias, 21(58), 135–155. https://doi.org/10.52428/20758944.v21i58.1390

Issue

Section

Applied Engineering Project

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.