Estudio del mecanismo de reacción de la generación de hidrógeno a partir de borohidruro de sodio (calculo teórico)

Study of the reaction mechanism of hydrogen generation from sodium borohydride (theoretical calculation)

Autores/as

DOI:

https://doi.org/10.52428/20758944.v19iEspecial.406

Palabras clave:

Hyperchem, H2 generation, reduction, catalyst, pH

Resumen

En el presente artículo, usando el software Hyperchem Professional versión 8.0, para calculo teórico con el método semiempírico de ZINDO/1, se estudió el mecanismo de reacción de generación de hidrógeno a partir de borohidruro de sodio tanto en medio neutro como en medio ácido.

PALABRAS CLAVE: Hyperchem, Generación de hidrógeno, reducción, catálisis, pH

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Valerio Choque Flores, Higher University of San Andrés

Grupo de Química Teórica y del Estado Sólido, Instituto de Investigaciones Químicas (IIQ), UMSA, La Paz-Bolivia.

Saúl Cabrera, Higher University of San Andrés

Universidad Mayor De San Andrés Facultad de Ciencias Puras y Naturales: La Paz, Bolivia.

Citas

J. Leu, A. Su, J. Kang, Z. Ming huan, Catalysis 10 (2020) 451

https://doi.org/10.3390/catal10040451 DOI: https://doi.org/10.3390/catal10040451

J. Manna, B. Roy, D. Pareck, P. Sharma, Catalysis, Structure Reactivity, 3 (4) (2017) 157

https://doi.org/10.1080/2055074X.2017.1344793 DOI: https://doi.org/10.1080/2055074X.2017.1344793

Montes de Oca, I., 1989 « Geografia y Recursos Naturales de Bolivia »-Editorial Educacional del M.E.C. La Paz, 574.

Alejandro Flores, Eliana Thelma, "reactivación económica del departamento de potosí en base al aprovechamiento de los recursos evaporíticos del salar de Uyuni", Tesis de Grado, (2008) UMSA, La Paz-Bolivia.

Zhai, S.; Jiang, S.; Liu, C.; Li, Z.; Yu, T.; Sun, L.; Ren, G.; Deng, W. Journal Physical and Chemical Letter, 13 (2022) 8586.

https://doi.org/10.1021/acs.jpclett.2c02149 DOI: https://doi.org/10.1021/acs.jpclett.2c02149

Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. ACS Catalysis. 10 (2020) 11318

https://doi.org/10.1021/acscatal.0c02930 DOI: https://doi.org/10.1021/acscatal.0c02930

Piazza, V.; Junior, R.B.S.; Gazzoli, D.; Groppi, G.; Beretta, A., Chemical Engineering Research and Design, 181 (2022) 458-472.

https://doi.org/10.1016/j.cherd.2022.03.048 DOI: https://doi.org/10.1016/j.cherd.2022.03.048

Arzac, G.M.; Fernández, A.; Godinho, V.; Hufschmidt, D.; de Haro, M.C.J.; Medrán, B.; Montes, O., Nanomaterials, 11 (2021) 2326

https://doi.org/10.3390/nano11092326 DOI: https://doi.org/10.3390/nano11092326

Kojima Y. Et. Al. International Journal of Hidrogen Energy, 27 (2002) 1029

https://doi.org/10.1016/S0360-3199(02)00014-9 DOI: https://doi.org/10.1016/S0360-3199(02)00014-9

R. sachse, D. Bernsmeier, R. Schmack, I. Hausler, A. Hertwing, K. Kraffert, J. Nissen, R. Kraehnert, Catalysis Science Technology, 2057 (2020) 10. DOI:10.1039/c9cy02285f.

https://doi.org/10.1039/C9CY02285F DOI: https://doi.org/10.1039/C9CY02285F

Q. Zaib, D. Kyung, Scientifc Reports, 8845 (2022) 12, doi.org/10.1038/s41598-022-12787-0

https://doi.org/10.1038/s41598-022-12787-0 DOI: https://doi.org/10.1038/s41598-022-12787-0

E. Ruiz-Lopez, M. Ribota Pelaez, M. Blasco Ruz, M. Dominguez, M. Martinez Tejada, S. Ivanova, M. A. Centeno, Materials, 472 (2023) 16, doi.org/10.3390/ma16020472.

https://doi.org/10.3390/ma16020472 DOI: https://doi.org/10.3390/ma16020472

Xu, R.; Lu, W.; Toan, S.; Zhou, Z.; Russell, C.K.; Sun, Z.; Sun, Z. Journal Materials Chemical A, 9 (2021) 24241-24260.

https://doi.org/10.1039/D1TA05910F DOI: https://doi.org/10.1039/D1TA05910F

Gonçalves, L.P.L.; Christensen, D.B.; Meledina, M.; Salonen, L.M.; Petrovykh, D.Y.; Carbó-Argibay, E.; Sousa, J.P.S.; Soares, O.S.G.P.; Pereira, M.F.R.; Kegnæs, S.; et al. Catalysis Science &Technology, 10 (2020) 1991-1995.

https://doi.org/10.1039/D0CY00145G DOI: https://doi.org/10.1039/D0CY00145G

H. I. Schlesinger, Journal American Chemical Society 5 (1953) 215

https://doi.org/10.1021/ja01097a057 DOI: https://doi.org/10.1021/ja01097a057

Aiello, R. Et. al. Production of hydrogen from chemical hydride via hydrolysis with steam. International Journal Hydrogen Energy, 24 (1999) 1123

https://doi.org/10.1016/S0360-3199(99)00002-6 DOI: https://doi.org/10.1016/S0360-3199(99)00002-6

J. A. Gardiner and J. W. Collat, Journal American Chemical Society, 87 (1965) 1692

https://doi.org/10.1021/ja01086a013

Clifford M. Kaufman and Buddhadev Sen, Journal Chemical Society Dalton trans (1985) 306

D.A. Lyttle, E. H. Jensen, and W. A. Struck, Journal American Chemical Society, 87 (1965) 1692

https://doi.org/10.1021/ja01086a013 DOI: https://doi.org/10.1021/ja01086a013

Descargas

Publicado

01-07-2023

Cómo citar

Choque Flores, V. R., & Cabrera, S. (2023). Estudio del mecanismo de reacción de la generación de hidrógeno a partir de borohidruro de sodio (calculo teórico): Study of the reaction mechanism of hydrogen generation from sodium borohydride (theoretical calculation). Journal Boliviano De Ciencias, 19(Especial). https://doi.org/10.52428/20758944.v19iEspecial.406

Número

Sección

Artículos Científicos