Analyses and calculation of the extreme event discharges with stochastic storms in the Misicuni basin – Cochabamba, Bolivia

Authors

  • Claude LE NOIR Universidad Privada del Valle image/svg+xml
  • Andres Cardoso Velasco Universidad Privada del Valle

DOI:

https://doi.org/10.52428/20758944.v19i54.939

Keywords:

Spanisch

Abstract

Hydrological studies of extreme events are of great importance for the design, operation and control of reservoirs. In the present research, the basin of the Misicuni reservoir located in the Tunari mountain range of the city of Cochabamba was analyzed based on the information of the rainfall stations in operation within the basin and according to different hydrological methods for the determination of maximum flows.

The stochastic method was applied using specialized software developed by the Universidad de los Andes in Colombia and financed by the IDB[1] (IT-LluviaNH and IT-Inundación). PADF curves[2] and 300 elliptical storm scenarios were determined for return periods of 2, 5, 10, 20, 50 and 100 years. For each scenario, stochastic hydrographs were determined at the sub-basin level and at the dam site using the HEC-HMS[3] and HEC-RAS hydraulics[4] hydrological models.

The conventional deterministic method has been developed through Thiessen polygons, IDF curve analysis[5], design storms for different return periods, and the application of the HEC-HMS platform.

The graphical and numerical comparison of the hydrographs at the outlet of the basin allowed us to verify the variation between the methodologies applied and to validate their influence on the spillway of the dam through the transit of floods over the reservoir.

Maximum stochastic flow rates were lower than those determined by conventional methodologies. This is due to the non-uniformity of precipitation intensities over the basin area. However, considering the simultaneity of independent extreme event scenarios in each sub-basin (applying very low percentages to the probability of exceedance in the stochastic method), we have similar maximum flows between the methodologies.

Likewise, the calculation of the projection of flows with return periods of 2, 5, 10, 20, 50 and 100 years to return periods of 1000 and 10000 years for both methodologies is presented. The impact of the laminated maximum stochastic flows does not pose a risk to the dam spillway as they are lower than the design flow. That is why it will be possible to take into account scenarios that can improve the profitability of the reservoir, but prior to and parallel to a constant capacity of the three main runoffs that enter the reservoir.

1] IDB = Inter-American Development Bank

[2] PADF = (curves) Precipitation, Area, Duration and Frequency

[3] HEC-HMS = Hydraulic Engineering Center – Hydrological Modal System

[4] HEC-RAS = Hydraulic Engineering Center – River Analysis System

[5] IDF = Intensity-Duration – Frequency Curve(s)

Downloads

Download data is not yet available.

References

A. Cardoso Velasco; "Cálculo de los Caudales de Evento Extremo en la Cuenca de Misicuni mediante Tormentas Estocásticas.", Proyecto de Grado, presentado para optar al Diploma Académico de Licenciatura en Ingeniería Civil, Universidad Privada del Valle, Departamento Académico de Ingeniería Civil, Carrera de Ingeniería Civil, 2022.

Aldana Flores, D. A., & Leigue Fernández, M. A. (2022). Estudio hidrológico para determinación de caudales máximos en la cuenca del río San Pedro de la ciudad de Tarija, Bolivia.

C. Le Noir, (2017). Estudio Hidrológico Misicuni - Rio Titiri, Informe de consultoría - contratación menor.

Coca Guzman R.; Análisis de eventos extremos por un método probabilístico con generación estocástica de tormentas - río Icona". Proyecto de Grado, presentado para optar al Diploma Académico de Licenciatura en Ingeniería Civil, Universidad Mayor de San Simón, Carrera de Ingeniería Civil, 2021

D. Campos Aranda; "Procesos del Ciclo Hidrológico" (1992); Universidad Autónoma de San Luis Potosí, S.L.P. México.

ENGEVIX CAEM (2015). "Estudios y evaluaciones hidráulicas en el vertedero del Proyecto Múltiple Misicuni cambios generales" - informe de consultoría PROYECTO MULTIPLE MISICUNI 8990/US-3H-MC-0002

ERN; "Modelos de Evaluación de Amenazas Naturales y Selección", Informe Técnico, Tomo 1 (Versión digital) (2016) Recuperado de https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R6-T1-3%20

ITEC, (2015); BID Proyecto #: RG-T2416 Perfil de riesgo de desastres para Bolivia ante inundaciones y deslizamientos en cuencas seleccionadas (río Rocha y río Grande - Informe Final, Universidad de los Andes, Colombia. (Versión digital). Recuperado de https://ewsdata.rightsindevelopment.org/files/documents/07/IADB-BO-L1107.pdf.

ITEC, (2018). "Manual de usuario del software IT-Flood V.2.2" (Manual). Universidad de los Andes, Colombia. (Versión digital). Recuperado de https://ecapra.org/es/topics/it-flood.

ITEC, (2018). "Manual de usuario del software IT-NHrain V.3.0." Manual, Universidad de los Andes, Colombia. (Versión digital). Recuperado de https://ecapra.org/topics/it-nhrain

J. Shaman, M. Stieglitz y D. Burns; "Are big basins just the sum of small catchments"; Hydrol. Process. 18, 3195-3206 (2004); Published online in Wiley InterScience (0); DOI: 10.1002/hyp. 5739

https://doi.org/10.1002/hyp.5739 DOI: https://doi.org/10.1002/hyp.5739

López, P. (2016). Informe modelo de operación inicial del embalse Misicuni. Informe de consultoría- contratación menor.

M. Villón Béjar, (2012). "HIDROESTA 2 Cálculos Hidrológicos - Manual de Usuario", Tecnológico de Costa Rica, Lima Perú - Ediciones Villón - 10/2012.

Mapa de Cobertura vegetal y Uso actual de la tierra de Bolivia del 2010 desarrollado por el Ministerio de Desarrollo Rural y Tierras (MDRyT) - Viceministerio de Tierras disponible en la página web de GeoBolivia (MDRyT, 2011).

Mapa de tipo de suelos de la cuenca Misicuni digitalizado en base a la imagen del mapa de suelos desarrollado por BioTerra para el plan de manejo integral de la cuenca de aporte del embalse Misicuni en 2004.

Rincón, D.; Velandia, J.F.; Tsanis, I.; Khan, U.T. Stochastic Flood Risk Assessment under Climate Change Scenarios for Toronto, Canada Using CAPRA. Water 2022, 14, 227. https://doi.org/10.3390/w14020227

https://doi.org/10.3390/w14020227 DOI: https://doi.org/10.3390/w14020227

V. T. Chow, D. Maidment, y L. Mays; "Hidrología Aplicada" (1994). (Versión digital). Recuperado de https://www.libreriaingeniero.com/2017/12/hidrologia-aplicada-ven-te-chow.html.

W. R. Sandoval Erazo y E. P. Aguilera Ortíz; "Determinación de Caudales en cuencas con poca información Hidrológica" (2014), pp.100 - 110, Revista Ciencia UNEMI.

https://doi.org/10.29076/issn.2528-7737vol7iss12.2014pp100-110p DOI: https://doi.org/10.29076/issn.2528-7737vol7iss12.2014pp100-110p

National Engineering Hand Book; National Resources Conservation Service; NRCS part 630 (2004) chapter 9, "Hydrogical Soil-Cover Complexes" and chapter 10 "Hydrology". Recuperado de:

http://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/NEHhydrology/ch9.pdf y

http://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/NEHhydrology/ch10.pdf

World Meteorological Organization; "Tropical Hydrology" (1987) WMO - No. 655 - Geneva - Switserland.

Published

22-12-2023

How to Cite

LE NOIR, C., & Cardoso Velasco , A. (2023). Analyses and calculation of the extreme event discharges with stochastic storms in the Misicuni basin – Cochabamba, Bolivia. Journal Boliviano De Ciencias, 19(54), 77–113. https://doi.org/10.52428/20758944.v19i54.939

Issue

Section

Applied Engineering Project

Most read articles by the same author(s)