Microbots and nanobots for the treatment of cancer tumors
DOI:
https://doi.org/10.52428/20758944.v18i53.249Keywords:
Microbots, Nanobots, Cancer, Drug deliveryAbstract
The use of nano and microbots as a treatment for cancerous tumors had accelerated advances during the last few years, for this reason it was considered pertinent to carry out this documentary review. An exhaustive search was carried out on the progress of their current application, their operation and the advantages and disadvantages of their use. Nano and microbots have a biomimetic approach, since there are several models inspired by bacteria and other living organisms, due to their properties in the treatment of cancer. Nanomedicines have proven to have advantages compared to other types of drug administration; the combination of these concepts results in a more effective treatment of cancerous tumors than other conventional therapies. Currently, micro- and nanobots must survive, for example, the immune system, locate the tumor and be located by human operators, perform the specific operation of drug release, and be eliminated from the body once their mission is completed. In the evolution of micro- and nanobots, more and more efficient models are becoming available, and this can translate into great benefits, the main the reduction of side effects, due to the precise drug release system. However, there are not too many models that have passed to the clinical phase, due to several factors such as the complexity of their operation, their safety, cost and regulations. Therefore, efforts must be redoubled to develop a feasible model, to progress in the subject and not to allow its abandonment, given that we are at a decisive moment to meet this objective.
Downloads
References
Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J., & Forrest, M. L. (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 61(6), 457–466. doi: https://doi.org/10.1016/j.addr.2009.03.010 DOI: https://doi.org/10.1016/j.addr.2009.03.010
Akhter, M. H., & Nomani, M. S. (2019). Bio-Inspired nanomedicine an emerging trend for drug targeting into cancer cells. Pharma focus Asia. Recuperado de: https://www.pharmafocusasia.com/articles/bio-inspired-nanomedicine-an-emerging-trend-for-drug-targeting-into-cancer-cells
Akin, D., Sturgis, J., Ragheb, K., Sherman, D., Burkholder, K., Robinson, J. P., Bhunia, A. K., Mohammed, S., & Bashir, R. (2007). Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnology, 2(7), 441–449. doi: https://doi.org/10.1038/nnano.2007.149
Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070. doi: https://doi.org/10.1021/nl071546n
Bar-Cohen, Y. (2005). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS. C. A. Mota Soares et all. (Eds.) Lisbon. Portugal. July 18-21.
Behkam, B., & Sitti, M. (2008). Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Applied Physics Letters, 93(22), 223901. doi: https://doi.org/10.1063/1.3040318
Champion, J. A., Katare, Y. K., & Mitragotri, S. (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release, 121(1–2), 3–9. https://doi.org/10.1016/j.jconrel.2007.03.022
Chen, Y., Kosmas, P., Anwar, P. S., & Huang, L. (2015). A touch-communication framework for drug delivery based on a transient microbot system. IEEE transactions on nanobioscience, 14(4), 397-408.
Cunha, D., Ben Yahia, M., Hall, S., Miller, S. R., Chevreau, H., Elkaïm, E., Maurin, G., Horcajada, P., & Serre, C. (2013). Rationale of drug encapsulation and release from biocompatible porous metal–Organic frameworks. Chemistry of Materials, 25(14), 2767–2776. https://doi.org/10.1021/cm400798p
Debbage, P., & Jaschke, W. (2008). Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845–875. doi: https://doi.org/10.1007/s00418-008-0511-y
Diller, E. & Sitti, M. (2011). Micro-Scale mobile robotics. Foundations and Trends in Robotics, 2(3), 143-259. doi: https://doi.org/10.1561/2300000023
Dolev, S., Narayanan, R. P., & Rosenblit, M. (2019). Design of nanorobots for exposing cancer cells. Nanotechnology, 30(31), 315501. doi: https://doi.org/10.1088/1361-6528/ab1770
Dutta, D., & Sailapu, S. K. (2020). Biomedical applications of nanobots. In Intelligent Nanomaterials for Drug Delivery Applications (pp. 179-195). Elsevier. doi: https://doi.org/10.1016/B978-0-12-817830-0.00010-2
Felfoul, O., Mohammadi, M., Taherkhani, S., de Lanauze, D., Zhong Xu, Y., Loghin, D., Essa, S., Jancik, S., Houle, D., Lafleur, M., Gaboury, L., Tabrizian, M., Kaou, N., Atkin, M., Vuong, T., Batist, G., Beauchemin, N., Radzioch, D., & Martel, S. (2016). Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11), 941–947. doi: https://doi.org/10.1038/nnano.2016.137
Felgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology, 2016, 1–14. doi: https://doi.org/10.1155/2016/8451728
Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., Bray, F. (2020). Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Recuperado de: https://gco.iarc.fr/today
Forbes, N. S. (2010). Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 10(11), 785–794. doi: https://doi.org/10.1038/nrc2934
Ferrando-Climent, L., Rodriguez-Mozaz, S., & Barceló, D. (2014). Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment. Environmental Pollution, 193, 216–223. https://doi.org/10.1016/j.envpol.2014.07.002
Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161–171. doi: https://doi.org/10.1038/nrc1566
Feynman, R. (29 de diciembre de 1959). There’s Plenty of Room at the Bottom [Discurso principal]. Charla dirigida a la Sociedad Estadounidense de Física, Instituto Tecnológico de California.
Fubini, B., Ghiazza, M., & Fenoglio, I. (2010). Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 4(4), 347–363. doi: https://doi.org/10.3109/17435390.2010.509519
Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B. W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews, 106, 27–44. doi: https://doi.org/10.1016/j.addr.2016.09.007
Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. Doi: https://doi.org/10.3389/fphar.2018.00790
Huwyler, J., Kettiger, H., Schipanski, A., & Wick, P. (2013). Engineered nanomaterial uptake and tissue distribution: from cell to organism. International Journal of Nanomedicine, 3255. doi: https://doi.org/10.2147/ijn.s49770
Krishna, G., Mary, L. R., & Jerome, K. (2019, March). Nanobots for biomedical applications. In Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology (pp. 270-279).doi: https://doi.org/10.1145/3326172.3326189
Kumar, S. S., Nasim, B. P., & Abraham, E. (2018). Nanorobots a future Device for Diagnosis and Treatment. Journal of Pharmacy and Pharmaceutics, 5(1), 44-49. doi: https://doi.org/10.15436/2377-1313.18.1815 DOI: https://doi.org/10.15436/2377-1313.18.1815
Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., ... & Zhao, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258-264. doi: https://doi.org/10.1038/nbt.4071 DOI: https://doi.org/10.1038/nbt.4071
Liu, S. Xu, X. Zeng, X. Li, L. Chen, Q. & Li, J. (2014). Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncology Letters, 8(6), 2359–2366. doi: https://doi.org/10.3892/ol.2014.2525
Medina-Sánchez, M., & Schmidt, O. G. (2017). Medical microbots need better imaging and control. Nature News, 545(7655), 406.doi: https://doi.org/10.1038/545406a
Min, J. J., Nguyen, V. H., & Gambhir, S. S. (2010). Molecular imaging of biological gene delivery vehicles for targeted cancer therapy: beyond viral vectors. Nuclear medicine and molecular imaging, 44(1), 15-24. doi: https://doi.org/10.1007/s13139-009-0006-3
Mostaghaci, B., Yasa, O., Zhuang, J., & Sitti, M. (2017). Bacteriabots: bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts (Adv. Sci. 6/2017). Advanced Science, 4(6). doi: https://doi.org/10.1002/advs.201770031
Ng, W. M., Teng, X. J., Guo, C., Liu, C., Low, S. C., Chan, D. J. C., ... & Lim, J. (2019). Motion control of biohybrid microbots under low Reynolds number environment: Magnetotaxis. Chemical Engineering and Processing-Process Intensification, 141, 107530. doi: https://doi.org/10.1016/j.cep.2019.107530
Organización Mundial de la Salud [OMS]. (2021, 3 marzo). Cáncer. Recuperado de: https://www.who.int/es/news-room/fact-sheets/detail/cancer
Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11(3), 169–183. doi: https://doi.org/10.1080/10717540490433895
Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3(6), 113–124. doi: https://doi.org/10.1038/s41578-018-0016-9
Sanchez, S., Solovev, A. A., Schulze, S., & Schmidt, O. G. (2011). Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications, 47(2), 698-700. doi: https://doi.org/10.1039/C0CC04126B
Schuerle, S. & Danino, T. (2020). Bacteria as living microrobots to fight cancer. The Scientist. Recuperado de: https://www.the-scientist.com/features/bacteria-as-living-microrobots-to-fight-cancer-67305
Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J., & Schmidt, O. G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 1-18.https://doi.org/10.1038/s41467-020-19322-7
Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer, 17(1), 20. doi: https://doi.org/10.1038/nrc.2016.108
Sonntag, L., Simmchen, J., & Magdanz, V. (2019). Nano-and micromotors designed for cancer therapy. Molecules, 24(18), 3410. doi: https://doi.org/10.3390/molecules24183410
Tu, Y., Peng, F., André, A. A. M., Men, Y., Srinivas, M., & Wilson, D. A. (2017a). Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano, 11(2), 1957–1963. doi: https://doi.org/10.1021/acsnano.6b08079
Tu, Y., Peng, F., White, P. B., & Wilson, D. A. (2017b). Redox-Sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angewandte Chemie, 129(26), 7728–7732. doi: https://doi.org/10.1002/ange.201703276
Wang, W., & Zhou, C. (2021). A Journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the State‐of‐the‐Art. Advanced Healthcare Materials, 10(2), 2001236. doi: https://doi.org/10.1002/adhm.202001236
Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157. doi: https://doi.org/10.1016/j.jconrel.2014.12.030
Zhang, C., Yan, L., Wang, X., Zhu, S., Chen, C., Gu, Z., & Zhao, Y. (2020). Progress, challenges, and future of nanomedicine. Nano Today, 35, 101008. doi: https://doi.org/10.1016/j.nantod.2020.101008
Akhter, M. H., & Nomani, M. S. (2019). Bio-Inspired nanomedicine an emerging trend for drug targeting into cancer cells. Pharma focus Asia. Recuperado de: https://www.pharmafocusasia.com/articles/bio-inspired-nanomedicine-an-emerging-trend-for-drug-targeting-into-cancer-cells
Akin, D., Sturgis, J., Ragheb, K., Sherman, D., Burkholder, K., Robinson, J. P., Bhunia, A. K., Mohammed, S., & Bashir, R. (2007). Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnology, 2(7), 441–449. doi: https://doi.org/10.1038/nnano.2007.149 DOI: https://doi.org/10.1038/nnano.2007.149
Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070. doi: https://doi.org/10.1021/nl071546n DOI: https://doi.org/10.1021/nl071546n
Bar-Cohen, Y. (2005). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS. C. A. Mota Soares et all. (Eds.) Lisbon. Portugal. July 18-21.
Behkam, B., & Sitti, M. (2008). Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Applied Physics Letters, 93(22), 223901. doi: https://doi.org/10.1063/1.3040318 DOI: https://doi.org/10.1063/1.3040318
Champion, J. A., Katare, Y. K., & Mitragotri, S. (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release, 121(1–2), 3–9. https://doi.org/10.1016/j.jconrel.2007.03.022 DOI: https://doi.org/10.1016/j.jconrel.2007.03.022
Chen, Y., Kosmas, P., Anwar, P. S., & Huang, L. (2015). A touch-communication framework for drug delivery based on a transient microbot system. IEEE transactions on nanobioscience, 14(4), 397-408. DOI: https://doi.org/10.1109/TNB.2015.2395539
Cunha, D., Ben Yahia, M., Hall, S., Miller, S. R., Chevreau, H., Elkaïm, E., Maurin, G., Horcajada, P., & Serre, C. (2013). Rationale of drug encapsulation and release from biocompatible porous metal–Organic frameworks. Chemistry of Materials, 25(14), 2767–2776. https://doi.org/10.1021/cm400798p DOI: https://doi.org/10.1021/cm400798p
Debbage, P., & Jaschke, W. (2008). Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845–875. doi: https://doi.org/10.1007/s00418-008-0511-y DOI: https://doi.org/10.1007/s00418-008-0511-y
Diller, E. & Sitti, M. (2011). Micro-Scale mobile robotics. Foundations and Trends in Robotics, 2(3), 143-259. doi: https://doi.org/10.1561/2300000023 DOI: https://doi.org/10.1561/2300000023
Dolev, S., Narayanan, R. P., & Rosenblit, M. (2019). Design of nanorobots for exposing cancer cells. Nanotechnology, 30(31), 315501. doi: https://doi.org/10.1088/1361-6528/ab1770 DOI: https://doi.org/10.1088/1361-6528/ab1770
Dutta, D., & Sailapu, S. K. (2020). Biomedical applications of nanobots. In Intelligent Nanomaterials for Drug Delivery Applications (pp. 179-195). Elsevier. doi: https://doi.org/10.1016/B978-0-12-817830-0.00010-2 DOI: https://doi.org/10.1016/B978-0-12-817830-0.00010-2
Felfoul, O., Mohammadi, M., Taherkhani, S., de Lanauze, D., Zhong Xu, Y., Loghin, D., Essa, S., Jancik, S., Houle, D., Lafleur, M., Gaboury, L., Tabrizian, M., Kaou, N., Atkin, M., Vuong, T., Batist, G., Beauchemin, N., Radzioch, D., & Martel, S. (2016). Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11), 941–947. doi: https://doi.org/10.1038/nnano.2016.137 DOI: https://doi.org/10.1038/nnano.2016.137
Felgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology, 2016, 1–14. doi: https://doi.org/10.1155/2016/8451728 DOI: https://doi.org/10.1155/2016/8451728
Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., Bray, F. (2020). Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Recuperado de: https://gco.iarc.fr/today
Forbes, N. S. (2010). Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 10(11), 785–794. doi: https://doi.org/10.1038/nrc2934 DOI: https://doi.org/10.1038/nrc2934
Ferrando-Climent, L., Rodriguez-Mozaz, S., & Barceló, D. (2014). Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment. Environmental Pollution, 193, 216–223. https://doi.org/10.1016/j.envpol.2014.07.002 DOI: https://doi.org/10.1016/j.envpol.2014.07.002
Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161–171. doi: https://doi.org/10.1038/nrc1566 DOI: https://doi.org/10.1038/nrc1566
Feynman, R. (29 de diciembre de 1959). There’s Plenty of Room at the Bottom [Discurso principal]. Charla dirigida a la Sociedad Estadounidense de Física, Instituto Tecnológico de California.
Fubini, B., Ghiazza, M., & Fenoglio, I. (2010). Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 4(4), 347–363. doi: https://doi.org/10.3109/17435390.2010.509519 DOI: https://doi.org/10.3109/17435390.2010.509519
Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B. W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews, 106, 27–44. doi: https://doi.org/10.1016/j.addr.2016.09.007 DOI: https://doi.org/10.1016/j.addr.2016.09.007
Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. Doi: https://doi.org/10.3389/fphar.2018.00790 DOI: https://doi.org/10.3389/fphar.2018.00790
Huwyler, J., Kettiger, H., Schipanski, A., & Wick, P. (2013). Engineered nanomaterial uptake and tissue distribution: from cell to organism. International Journal of Nanomedicine, 3255. doi: https://doi.org/10.2147/ijn.s49770 DOI: https://doi.org/10.2147/IJN.S49770
Krishna, G., Mary, L. R., & Jerome, K. (2019, March). Nanobots for biomedical applications. In Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology (pp. 270-279).doi: https://doi.org/10.1145/3326172.3326189 DOI: https://doi.org/10.1145/3326172.3326189
Liu, S. Xu, X. Zeng, X. Li, L. Chen, Q. & Li, J. (2014). Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncology Letters, 8(6), 2359–2366. doi: https://doi.org/10.3892/ol.2014.2525 DOI: https://doi.org/10.3892/ol.2014.2525
Medina-Sánchez, M., & Schmidt, O. G. (2017). Medical microbots need better imaging and control. Nature News, 545(7655), 406.doi: https://doi.org/10.1038/545406a DOI: https://doi.org/10.1038/545406a
Min, J. J., Nguyen, V. H., & Gambhir, S. S. (2010). Molecular imaging of biological gene delivery vehicles for targeted cancer therapy: beyond viral vectors. Nuclear medicine and molecular imaging, 44(1), 15-24. doi: https://doi.org/10.1007/s13139-009-0006-3 DOI: https://doi.org/10.1007/s13139-009-0006-3
Mostaghaci, B., Yasa, O., Zhuang, J., & Sitti, M. (2017). Bacteriabots: bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts (Adv. Sci. 6/2017). Advanced Science, 4(6). doi: https://doi.org/10.1002/advs.201770031 DOI: https://doi.org/10.1002/advs.201770031
Ng, W. M., Teng, X. J., Guo, C., Liu, C., Low, S. C., Chan, D. J. C., ... & Lim, J. (2019). Motion control of biohybrid microbots under low Reynolds number environment: Magnetotaxis. Chemical Engineering and Processing-Process Intensification, 141, 107530. doi: https://doi.org/10.1016/j.cep.2019.107530 DOI: https://doi.org/10.1016/j.cep.2019.107530
Organización Mundial de la Salud [OMS]. (2021, 3 marzo). Cáncer. Recuperado de: https://www.who.int/es/news-room/fact-sheets/detail/cancer
Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11(3), 169–183. doi: https://doi.org/10.1080/10717540490433895 DOI: https://doi.org/10.1080/10717540490433895
Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3(6), 113–124. doi: https://doi.org/10.1038/s41578-018-0016-9 DOI: https://doi.org/10.1038/s41578-018-0016-9
Sanchez, S., Solovev, A. A., Schulze, S., & Schmidt, O. G. (2011). Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications, 47(2), 698-700. doi: https://doi.org/10.1039/C0CC04126B DOI: https://doi.org/10.1039/C0CC04126B
Schuerle, S. & Danino, T. (2020). Bacteria as living microrobots to fight cancer. The Scientist. Recuperado de: https://www.the-scientist.com/features/bacteria-as-living-microrobots-to-fight-cancer-67305
Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J., & Schmidt, O. G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 1-18.https://doi.org/10.1038/s41467-020-19322-7 DOI: https://doi.org/10.1038/s41467-020-19322-7
Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer, 17(1), 20. doi: https://doi.org/10.1038/nrc.2016.108 DOI: https://doi.org/10.1038/nrc.2016.108
Sonntag, L., Simmchen, J., & Magdanz, V. (2019). Nano-and micromotors designed for cancer therapy. Molecules, 24(18), 3410. doi: https://doi.org/10.3390/molecules24183410 DOI: https://doi.org/10.3390/molecules24183410
Tu, Y., Peng, F., André, A. A. M., Men, Y., Srinivas, M., & Wilson, D. A. (2017a). Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano, 11(2), 1957–1963. doi: https://doi.org/10.1021/acsnano.6b08079 DOI: https://doi.org/10.1021/acsnano.6b08079
Tu, Y., Peng, F., White, P. B., & Wilson, D. A. (2017b). Redox-Sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angewandte Chemie, 129(26), 7728–7732. doi: https://doi.org/10.1002/ange.201703276 DOI: https://doi.org/10.1002/ange.201703276
Wang, W., & Zhou, C. (2021). A Journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the State‐of‐the‐Art. Advanced Healthcare Materials, 10(2), 2001236. doi: https://doi.org/10.1002/adhm.202001236 DOI: https://doi.org/10.1002/adhm.202001236
Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157. doi: https://doi.org/10.1016/j.jconrel.2014.12.030 DOI: https://doi.org/10.1016/j.jconrel.2014.12.030
Zhang, C., Yan, L., Wang, X., Zhu, S., Chen, C., Gu, Z., & Zhao, Y. (2020). Progress, challenges, and future of nanomedicine. Nano Today, 35, 101008. doi: https://doi.org/10.1016/j.nantod.2020.101008 DOI: https://doi.org/10.1016/j.nantod.2020.101008
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luz Camila Clavijo Cruz, Camila Fernandez Rodriguez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.