Feasibility study for the implementation of Agrivoltaics in Bolivia
DOI:
https://doi.org/10.52428/20758944.v21i58.1368Keywords:
Distributed generation, Photovoltaics, AgrivoltaicsAbstract
The combustion of fossil fuels for electricity generation is one of the main drivers of climate related phenomena such as hailstorms, droughts, and floods, which cause severe losses in agricultural production. Furthermore, fossil fuel use represents a significant risk factor for public health. In response, governments around the world have introduced policies aimed at promoting electricity generation from renewable and environmentally friendly sources.
Bolivia has not remained on the sidelines of these initiatives: the National Electricity Company has set the transition of the national energy matrix as a strategic objective, seeking to ensure that most of the electricity supplied to Bolivian households comes from renewable sources.
Agrovoltaics represents an innovative technique that combines solar photovoltaic energy production with agriculture on the same land surface. This strategic approach employs elevated or semi-transparent structures for photovoltaic panels, which not only generate electricity but also create a favorable microclimate for crops by mitigating thermal stress and reducing evapotranspiration. The overall objective is to optimize land use by enabling the coexistence and synergy of both activities, thereby fostering more resilient and efficient agricultural production. For this reason, agrovoltaics is considered a valuable contribution that supports the transition of the national energy matrix.
With respect to the installed capacity of agrovoltaic systems, both production cost assessments and feasibility analyses carried out across the nine departments of Bolivia are regulated by the conditions, guidelines, and standards established under Supreme Decree No. 5167 on distributed generation. These analyses are conducted in accordance with the General Category 1 of the current tariff structure, as defined for each electricity distributor in every department.
Downloads
References
Agrivoltaísmo Sun'Agri. (n.d.). Agrivoltaísmo. https://sunagri.fr/es/
Alvarado Ladrón de Guevara, J. (2019). Diseño y cálculo de una instalación fotovoltaica.
Apaza Mamani, E. (2006). Comportamiento agronómico de variedades de frutilla (Fragaria virginiana) a diferentes densidades de plantación en la provincia Sud Yungas del departamento de La Paz [Tesis de grado].
Cabrera, D., Díaz, M., Gracia, R., Hernández, C., Martel, G., Pardilla, J., Piernavieja, G., Schallenberg, J., Subiela, V., & Unamunzaga, P. (2018). Energías renovables y eficiencia energética.
Campos de Bolivia. (n.d.). Agricultura en Bolivia. https://www.camposdebolivia.com/agricultura-en-bolivia/
Colantoni, A., Monarca, D., Marucci, A., Cecchini, M., Zambon, I., Di Battista, F., Maccario, D., Saporito, G. M., & Beruto, M. (2018). Solar radiation distribution inside a greenhouse prototypal with photovoltaic mobile plant and effects on flower growth. Sustainability, 10(4), Article 855. https://doi.org/10.3390/su10040855
Delgadillo Camacho, M. F., & Lazo Suárez, Á. (2015). Diagnósticos sectoriales: Sector agropecuario (Tomo 8). UDAPE.
Dupraz, C. (2019). Study on photovoltaic modules on greenhouse roof for energy and strawberry production.
Elortegui, N., Fernández, J., Jarabo, F., Macías, J., & Pérez, C. (1998). Libro de las energías renovables. S.A.P.T.
Enel Green Power. (n.d.). Energías renovables. https://www.enelgreenpower.com/es/learning-hub/energias-renovables
Enersol S.A. (s. f.). Enersol S.A. | Energía solar en Bolivia. Sitio web. https://www.enersol-sa.com/
Goetzberger, A., & Zastrow, A. (1981). Sobre la coexistencia de la conversión de energía solar y el cultivo de plantas.
Ibarra Yomayusa, J. (2022). Invernaderos agrovoltaicos: Desarrollo de eficiencias en el sector agrícola en Colombia.
Instituto de Desarrollo Agropecuario, & Instituto de Investigaciones Agropecuarias. (2017). Manual de manejo agronómico de la frutilla.
Kaufmann, J., Cartsburg, M., Noleppa, S., Hattermann, F., Salinas, A., & Nava, G. (2023). Análisis costo-beneficio: Producción de frutilla con riego por goteo en la cuenca del río Guadalquivir, Tarija.
Liendo B., R. (2018). Seguridad alimentaria con soberanía: Rompecabezas entre la agricultura familiar y la agroindustria.
Medio Ambiente y Naturaleza. (n.d.). Energías renovables en la agricultura: Agrovoltaica. https://medioambienteynaturaleza.com/energias-renovables-agricultura-agrovoltaica/
Muñoz Vidal, B. (2022). Investigación y desarrollo de la optimización de la tecnología agrovoltaica en la zona de Almería.
Nagashima, A. (2020). Compartir energía solar: Cambiar el mundo y la vida.
NASA. (2025). Datos meteorológicos de la NASA [Base de datos]. NASA. https://worldwind.arc.nasa.gov/worldweather/
REM Tec. (n.d.). Agrovoltaico. https://remtec.energy/es/agrovoltaico
Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., Braun, C., Weselek, A., Bauerle, A., & Högy, P. (2020). Implementación de agrofotovoltaica: Análisis tecnoeconómico de la relación precio-rendimiento y sus implicaciones políticas.
Scognamiglio, A., Rizzo, A., & Picchi, P. (2021). Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). Renewable and Sustainable Energy Reviews, 138, 110600. https://doi.org/10.1016/j.rser.2020.110600
Secretaría de Agricultura, Ganadería y Pesca. (2023, January). Producción de frutilla en Argentina.
Tang, Y., Li, M., & Ma, X. (2019). Study on photovoltaic modules on greenhouse roof for energy and strawberry production. https://doi.org/10.1051/e3sconf/201911803049
Toledo, C., & Scognamiglio, A. (2021). Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). https://doi.org/10.3390/su13126871
UDAPE. (2015). Diagnósticos sectoriales 2015: Sector agropecuario (Tomo 8).
Uribe, H. (2013) Riego en frutilla. Chillan: Boletin INIA - Instituto de Investigaciones Agropecuarias, no. 262. https://hdl.handle.net/20.500.14001/7622.
Villagrán Díaz, V. (2019). Morfología y fisiología de la frutilla.
Xataka. (n.d.). La agrovoltaica promete ser el futuro del campo y la energía. https://www.xataka.com/energia/agrovoltaica-promete-ser-futuro-campo-energia-esta-ganando-terreno-espana
Yano, A., Kadowaki, M., Furue, A., Tamaki, N., Tanaka, T., Hiraki, E., Kato, Y., Ishizu, F., & Noda, S. (2020). Sombreado y características eléctricas de un conjunto fotovoltaico montado dentro del techo de un invernadero orientado de este a oeste.
Zisis, C., Pechlivani, E. M., Tsimikli, S., Mekeridis, E., Laskarakis, A., & Logothetidis, S. (2019). Organic photovoltaics on greenhouse rooftops: Effects on plant growth. Materials Today: Proceedings, 19, 65-72. https://doi.org/10.1016/j.matpr.2019.07.044
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Montaño Mariscal, B.D.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.









