Microbots y nanobots para el tratamiento de tumores cancerígenos

Autores/as

DOI:

https://doi.org/10.52428/20758944.v18i53.249

Palabras clave:

Microbots, Nanobots, Cáncer, Administración de fármacos

Resumen

El uso de nano y microbots como tratamiento para tumores cancerígenos, tuvo avances acelerados durante los últimos años, debido a esto se consideró pertinente realizar esta revisión documental. Se llevó a cabo una búsqueda exhaustiva del avance de su aplicación actual, su funcionamiento y las ventajas y desventajas de su utilización. Varios modelos nano y microbots están inspirados en bacterias y otros organismos vivos, por sus propiedades en el tratamiento del cáncer. Por su parte, las nanomedicinas tienen ventajas en comparación con la administración convencional de fármacos, la combinación de estos conceptos da como resultado, un tratamiento de tumores cancerígenos más efectivo. Actualmente los desafíos a los que se enfrentan los nano y microbots son: sobrevivir, por ejemplo, al sistema inmunológico; localizar al tumor y ser ubicados por operadores humanos, realizar la operación específica de liberación de fármacos y ser eliminados del cuerpo una vez completada su misión. En la evolución de los micro y nanobots, cada vez existen modelos más eficientes y esto puede traducirse en grandes beneficios, siendo el principal la reducción de efectos secundarios, debido al sistema de liberación precisa del fármaco.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luz Camila Clavijo Cruz, Universidad Privada del Valle

Estudiante de Ingeniería Biomédica, Universidad Privada del Valle, Cochabamba, Bolivia. 

ccl2019714@est.univalle.edu - camila.clavijo.5667@gmail.com 

Camila Fernandez Rodriguez , Universidad Privada del Valle

Estudiante de la Carrera de Ingeniería biomédica, Universidad Privada del Valle, Cochabamba, Bolivia.

frc2019374@est.univalle.edu - camila.fernandez.rodriguez1110@gmail.com

Citas

Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J., & Forrest, M. L. (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 61(6), 457–466. doi: https://doi.org/10.1016/j.addr.2009.03.010

Akhter, M. H., & Nomani, M. S. (2019). Bio-Inspired nanomedicine an emerging trend for drug targeting into cancer cells. Pharma focus Asia. Recuperado de: https://www.pharmafocusasia.com/articles/bio-inspired-nanomedicine-an-emerging-trend-for-drug-targeting-into-cancer-cells

Akin, D., Sturgis, J., Ragheb, K., Sherman, D., Burkholder, K., Robinson, J. P., Bhunia, A. K., Mohammed, S., & Bashir, R. (2007). Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnology, 2(7), 441–449. doi: https://doi.org/10.1038/nnano.2007.149

Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070. doi: https://doi.org/10.1021/nl071546n

Bar-Cohen, Y. (2005). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS. C. A. Mota Soares et all. (Eds.) Lisbon. Portugal. July 18-21.

Behkam, B., & Sitti, M. (2008). Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Applied Physics Letters, 93(22), 223901. doi: https://doi.org/10.1063/1.3040318

Champion, J. A., Katare, Y. K., & Mitragotri, S. (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release, 121(1–2), 3–9. https://doi.org/10.1016/j.jconrel.2007.03.022

Chen, Y., Kosmas, P., Anwar, P. S., & Huang, L. (2015). A touch-communication framework for drug delivery based on a transient microbot system. IEEE transactions on nanobioscience, 14(4), 397-408.

Cunha, D., Ben Yahia, M., Hall, S., Miller, S. R., Chevreau, H., Elkaïm, E., Maurin, G., Horcajada, P., & Serre, C. (2013). Rationale of drug encapsulation and release from biocompatible porous metal–Organic frameworks. Chemistry of Materials, 25(14), 2767–2776. https://doi.org/10.1021/cm400798p

Debbage, P., & Jaschke, W. (2008). Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845–875. doi: https://doi.org/10.1007/s00418-008-0511-y

Diller, E. & Sitti, M. (2011). Micro-Scale mobile robotics. Foundations and Trends in Robotics, 2(3), 143-259. doi: https://doi.org/10.1561/2300000023

Dolev, S., Narayanan, R. P., & Rosenblit, M. (2019). Design of nanorobots for exposing cancer cells. Nanotechnology, 30(31), 315501. doi: https://doi.org/10.1088/1361-6528/ab1770

Dutta, D., & Sailapu, S. K. (2020). Biomedical applications of nanobots. In Intelligent Nanomaterials for Drug Delivery Applications (pp. 179-195). Elsevier. doi: https://doi.org/10.1016/B978-0-12-817830-0.00010-2

Felfoul, O., Mohammadi, M., Taherkhani, S., de Lanauze, D., Zhong Xu, Y., Loghin, D., Essa, S., Jancik, S., Houle, D., Lafleur, M., Gaboury, L., Tabrizian, M., Kaou, N., Atkin, M., Vuong, T., Batist, G., Beauchemin, N., Radzioch, D., & Martel, S. (2016). Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11), 941–947. doi: https://doi.org/10.1038/nnano.2016.137

Felgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology, 2016, 1–14. doi: https://doi.org/10.1155/2016/8451728

Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., Bray, F. (2020). Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Recuperado de: https://gco.iarc.fr/today

Forbes, N. S. (2010). Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 10(11), 785–794. doi: https://doi.org/10.1038/nrc2934

Ferrando-Climent, L., Rodriguez-Mozaz, S., & Barceló, D. (2014). Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment. Environmental Pollution, 193, 216–223. https://doi.org/10.1016/j.envpol.2014.07.002

Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161–171. doi: https://doi.org/10.1038/nrc1566

Feynman, R. (29 de diciembre de 1959). There’s Plenty of Room at the Bottom [Discurso principal]. Charla dirigida a la Sociedad Estadounidense de Física, Instituto Tecnológico de California.

Fubini, B., Ghiazza, M., & Fenoglio, I. (2010). Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 4(4), 347–363. doi: https://doi.org/10.3109/17435390.2010.509519

Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B. W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews, 106, 27–44. doi: https://doi.org/10.1016/j.addr.2016.09.007

Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. Doi: https://doi.org/10.3389/fphar.2018.00790

Huwyler, J., Kettiger, H., Schipanski, A., & Wick, P. (2013). Engineered nanomaterial uptake and tissue distribution: from cell to organism. International Journal of Nanomedicine, 3255. doi: https://doi.org/10.2147/ijn.s49770

Krishna, G., Mary, L. R., & Jerome, K. (2019, March). Nanobots for biomedical applications. In Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology (pp. 270-279).doi: https://doi.org/10.1145/3326172.3326189

Kumar, S. S., Nasim, B. P., & Abraham, E. (2018). Nanorobots a future Device for Diagnosis and Treatment. Journal of Pharmacy and Pharmaceutics, 5(1), 44-49. doi: https://doi.org/10.15436/2377-1313.18.1815

Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., ... & Zhao, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258-264. doi: https://doi.org/10.1038/nbt.4071

Liu, S. Xu, X. Zeng, X. Li, L. Chen, Q. & Li, J. (2014). Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncology Letters, 8(6), 2359–2366. doi: https://doi.org/10.3892/ol.2014.2525

Medina-Sánchez, M., & Schmidt, O. G. (2017). Medical microbots need better imaging and control. Nature News, 545(7655), 406.doi: https://doi.org/10.1038/545406a

Min, J. J., Nguyen, V. H., & Gambhir, S. S. (2010). Molecular imaging of biological gene delivery vehicles for targeted cancer therapy: beyond viral vectors. Nuclear medicine and molecular imaging, 44(1), 15-24. doi: https://doi.org/10.1007/s13139-009-0006-3

Mostaghaci, B., Yasa, O., Zhuang, J., & Sitti, M. (2017). Bacteriabots: bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts (Adv. Sci. 6/2017). Advanced Science, 4(6). doi: https://doi.org/10.1002/advs.201770031

Ng, W. M., Teng, X. J., Guo, C., Liu, C., Low, S. C., Chan, D. J. C., ... & Lim, J. (2019). Motion control of biohybrid microbots under low Reynolds number environment: Magnetotaxis. Chemical Engineering and Processing-Process Intensification, 141, 107530. doi: https://doi.org/10.1016/j.cep.2019.107530

Organización Mundial de la Salud [OMS]. (2021, 3 marzo). Cáncer. Recuperado de: https://www.who.int/es/news-room/fact-sheets/detail/cancer

Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11(3), 169–183. doi: https://doi.org/10.1080/10717540490433895

Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3(6), 113–124. doi: https://doi.org/10.1038/s41578-018-0016-9

Sanchez, S., Solovev, A. A., Schulze, S., & Schmidt, O. G. (2011). Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications, 47(2), 698-700. doi: https://doi.org/10.1039/C0CC04126B

Schuerle, S. & Danino, T. (2020). Bacteria as living microrobots to fight cancer. The Scientist. Recuperado de: https://www.the-scientist.com/features/bacteria-as-living-microrobots-to-fight-cancer-67305

Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J., & Schmidt, O. G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 1-18.https://doi.org/10.1038/s41467-020-19322-7

Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer, 17(1), 20. doi: https://doi.org/10.1038/nrc.2016.108

Sonntag, L., Simmchen, J., & Magdanz, V. (2019). Nano-and micromotors designed for cancer therapy. Molecules, 24(18), 3410. doi: https://doi.org/10.3390/molecules24183410

Tu, Y., Peng, F., André, A. A. M., Men, Y., Srinivas, M., & Wilson, D. A. (2017a). Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano, 11(2), 1957–1963. doi: https://doi.org/10.1021/acsnano.6b08079

Tu, Y., Peng, F., White, P. B., & Wilson, D. A. (2017b). Redox-Sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angewandte Chemie, 129(26), 7728–7732. doi: https://doi.org/10.1002/ange.201703276

Wang, W., & Zhou, C. (2021). A Journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the State‐of‐the‐Art. Advanced Healthcare Materials, 10(2), 2001236. doi: https://doi.org/10.1002/adhm.202001236

Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157. doi: https://doi.org/10.1016/j.jconrel.2014.12.030

Zhang, C., Yan, L., Wang, X., Zhu, S., Chen, C., Gu, Z., & Zhao, Y. (2020). Progress, challenges, and future of nanomedicine. Nano Today, 35, 101008. doi: https://doi.org/10.1016/j.nantod.2020.101008

Akhter, M. H., & Nomani, M. S. (2019). Bio-Inspired nanomedicine an emerging trend for drug targeting into cancer cells. Pharma focus Asia. Recuperado de: https://www.pharmafocusasia.com/articles/bio-inspired-nanomedicine-an-emerging-trend-for-drug-targeting-into-cancer-cells

Akin, D., Sturgis, J., Ragheb, K., Sherman, D., Burkholder, K., Robinson, J. P., Bhunia, A. K., Mohammed, S., & Bashir, R. (2007). Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnology, 2(7), 441–449. doi: https://doi.org/10.1038/nnano.2007.149

Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070. doi: https://doi.org/10.1021/nl071546n

Bar-Cohen, Y. (2005). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS. C. A. Mota Soares et all. (Eds.) Lisbon. Portugal. July 18-21.

Behkam, B., & Sitti, M. (2008). Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Applied Physics Letters, 93(22), 223901. doi: https://doi.org/10.1063/1.3040318

Champion, J. A., Katare, Y. K., & Mitragotri, S. (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release, 121(1–2), 3–9. https://doi.org/10.1016/j.jconrel.2007.03.022

Chen, Y., Kosmas, P., Anwar, P. S., & Huang, L. (2015). A touch-communication framework for drug delivery based on a transient microbot system. IEEE transactions on nanobioscience, 14(4), 397-408.

Cunha, D., Ben Yahia, M., Hall, S., Miller, S. R., Chevreau, H., Elkaïm, E., Maurin, G., Horcajada, P., & Serre, C. (2013). Rationale of drug encapsulation and release from biocompatible porous metal–Organic frameworks. Chemistry of Materials, 25(14), 2767–2776. https://doi.org/10.1021/cm400798p

Debbage, P., & Jaschke, W. (2008). Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845–875. doi: https://doi.org/10.1007/s00418-008-0511-y

Diller, E. & Sitti, M. (2011). Micro-Scale mobile robotics. Foundations and Trends in Robotics, 2(3), 143-259. doi: https://doi.org/10.1561/2300000023

Dolev, S., Narayanan, R. P., & Rosenblit, M. (2019). Design of nanorobots for exposing cancer cells. Nanotechnology, 30(31), 315501. doi: https://doi.org/10.1088/1361-6528/ab1770

Dutta, D., & Sailapu, S. K. (2020). Biomedical applications of nanobots. In Intelligent Nanomaterials for Drug Delivery Applications (pp. 179-195). Elsevier. doi: https://doi.org/10.1016/B978-0-12-817830-0.00010-2

Felfoul, O., Mohammadi, M., Taherkhani, S., de Lanauze, D., Zhong Xu, Y., Loghin, D., Essa, S., Jancik, S., Houle, D., Lafleur, M., Gaboury, L., Tabrizian, M., Kaou, N., Atkin, M., Vuong, T., Batist, G., Beauchemin, N., Radzioch, D., & Martel, S. (2016). Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11), 941–947. doi: https://doi.org/10.1038/nnano.2016.137

Felgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology, 2016, 1–14. doi: https://doi.org/10.1155/2016/8451728

Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., Bray, F. (2020). Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Recuperado de: https://gco.iarc.fr/today

Forbes, N. S. (2010). Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 10(11), 785–794. doi: https://doi.org/10.1038/nrc2934

Ferrando-Climent, L., Rodriguez-Mozaz, S., & Barceló, D. (2014). Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment. Environmental Pollution, 193, 216–223. https://doi.org/10.1016/j.envpol.2014.07.002

Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161–171. doi: https://doi.org/10.1038/nrc1566

Feynman, R. (29 de diciembre de 1959). There’s Plenty of Room at the Bottom [Discurso principal]. Charla dirigida a la Sociedad Estadounidense de Física, Instituto Tecnológico de California.

Fubini, B., Ghiazza, M., & Fenoglio, I. (2010). Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 4(4), 347–363. doi: https://doi.org/10.3109/17435390.2010.509519

Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B. W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews, 106, 27–44. doi: https://doi.org/10.1016/j.addr.2016.09.007

Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. Doi: https://doi.org/10.3389/fphar.2018.00790

Huwyler, J., Kettiger, H., Schipanski, A., & Wick, P. (2013). Engineered nanomaterial uptake and tissue distribution: from cell to organism. International Journal of Nanomedicine, 3255. doi: https://doi.org/10.2147/ijn.s49770

Krishna, G., Mary, L. R., & Jerome, K. (2019, March). Nanobots for biomedical applications. In Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology (pp. 270-279).doi: https://doi.org/10.1145/3326172.3326189

Liu, S. Xu, X. Zeng, X. Li, L. Chen, Q. & Li, J. (2014). Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncology Letters, 8(6), 2359–2366. doi: https://doi.org/10.3892/ol.2014.2525

Medina-Sánchez, M., & Schmidt, O. G. (2017). Medical microbots need better imaging and control. Nature News, 545(7655), 406.doi: https://doi.org/10.1038/545406a

Min, J. J., Nguyen, V. H., & Gambhir, S. S. (2010). Molecular imaging of biological gene delivery vehicles for targeted cancer therapy: beyond viral vectors. Nuclear medicine and molecular imaging, 44(1), 15-24. doi: https://doi.org/10.1007/s13139-009-0006-3

Mostaghaci, B., Yasa, O., Zhuang, J., & Sitti, M. (2017). Bacteriabots: bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts (Adv. Sci. 6/2017). Advanced Science, 4(6). doi: https://doi.org/10.1002/advs.201770031

Ng, W. M., Teng, X. J., Guo, C., Liu, C., Low, S. C., Chan, D. J. C., ... & Lim, J. (2019). Motion control of biohybrid microbots under low Reynolds number environment: Magnetotaxis. Chemical Engineering and Processing-Process Intensification, 141, 107530. doi: https://doi.org/10.1016/j.cep.2019.107530

Organización Mundial de la Salud [OMS]. (2021, 3 marzo). Cáncer. Recuperado de: https://www.who.int/es/news-room/fact-sheets/detail/cancer

Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11(3), 169–183. doi: https://doi.org/10.1080/10717540490433895

Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3(6), 113–124. doi: https://doi.org/10.1038/s41578-018-0016-9

Sanchez, S., Solovev, A. A., Schulze, S., & Schmidt, O. G. (2011). Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications, 47(2), 698-700. doi: https://doi.org/10.1039/C0CC04126B

Schuerle, S. & Danino, T. (2020). Bacteria as living microrobots to fight cancer. The Scientist. Recuperado de: https://www.the-scientist.com/features/bacteria-as-living-microrobots-to-fight-cancer-67305

Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J., & Schmidt, O. G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 1-18.https://doi.org/10.1038/s41467-020-19322-7

Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer, 17(1), 20. doi: https://doi.org/10.1038/nrc.2016.108

Sonntag, L., Simmchen, J., & Magdanz, V. (2019). Nano-and micromotors designed for cancer therapy. Molecules, 24(18), 3410. doi: https://doi.org/10.3390/molecules24183410

Tu, Y., Peng, F., André, A. A. M., Men, Y., Srinivas, M., & Wilson, D. A. (2017a). Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano, 11(2), 1957–1963. doi: https://doi.org/10.1021/acsnano.6b08079

Tu, Y., Peng, F., White, P. B., & Wilson, D. A. (2017b). Redox-Sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angewandte Chemie, 129(26), 7728–7732. doi: https://doi.org/10.1002/ange.201703276

Wang, W., & Zhou, C. (2021). A Journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the State‐of‐the‐Art. Advanced Healthcare Materials, 10(2), 2001236. doi: https://doi.org/10.1002/adhm.202001236

Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157. doi: https://doi.org/10.1016/j.jconrel.2014.12.030

Zhang, C., Yan, L., Wang, X., Zhu, S., Chen, C., Gu, Z., & Zhao, Y. (2020). Progress, challenges, and future of nanomedicine. Nano Today, 35, 101008. doi: https://doi.org/10.1016/j.nantod.2020.101008

Descargas

Publicado

30-12-2022

Cómo citar

Clavijo Cruz, L. C., & Fernandez Rodriguez , C. (2022). Microbots y nanobots para el tratamiento de tumores cancerígenos. Journal Boliviano De Ciencias, 18(53), 94–113. https://doi.org/10.52428/20758944.v18i53.249

Número

Sección

Artículos de revisión bibliográfica