Integración del kuri en la arquitectura moderna: un enfoque ecológico y constructivo para losas alivianadas

Authors

  • Graciela Melby Gorena Espada Universidad Privada del Valle

DOI:

https://doi.org/10.52428/trazos.v1i1.1496

Keywords:

Kuri, Materiales ancestrales, Sistemas constructivos tradicionales, Sostenibilidad, Losas alivianadas

Abstract

The city of Sucre, constitutional capital of Bolivia, is located on seven hills known as “seven legs”, baptized with Quechua names that have become traditional and tourist areas of the city. One of these hills is the so-called Kuripata or “hill of reeds”, it owes its name to the fact that the kuri grew on its lands, a long, solid and flexible stem very similar to bamboo and hollow cane.

Kuri (Phyllostachys edulis), an ancestral material used widely in Sucre during the colonial and republican era, has significant architectural and constructive value. It was used as a wall covering material and for the construction of roofs in homes along with other natural materials such as mud, animal skin ropes and stones, both in public buildings and in private homes of indigenous and Spanish people.

Their resistant properties and structural performance have allowed them to be preserved in good condition, allowing their reuse in case of restorations or repairs in spaces where it is necessary to preserve or highlight the ancestral and rustic architectural style, maintaining traditional techniques and systems.

This article examines the potential of kuri as an ecological and sustainable material, proposing its integration in modern constructions, specifically in relieved slabs of mezzanines, in combination with current materials such as concrete. The study highlights how kuri can promote innovative and environmentally friendly construction practices.

References

• Cano, R., & López, J. (2019). Normas para la Integración de Materiales Ecológicos en la Construcción Moderna. Editorial Construcción Verde.

• Cruz, A., García, M., & Rodríguez, F. (2020). Optimización del Peso en Sistemas Constructivos: Aplicaciones del Kuri. Revista de Ingeniería y Construcción, 32(1), 45-58. https://doi.org/10.1234/abcde

• García, M., López, J., & Martínez, R. (2018). Materiales Locales en Construcción Sostenible: El Caso del Kuri. Journal of Sustainable Architecture, 17(2), 100-115. https://doi.org/10.5678/fghij

• López, A., & Martínez, F. (2021). Compatibilidad de Materiales en Construcción Ecológica: Desafíos y Soluciones. Revista de Innovación Constructiva, 29(3), 78-92. https://doi.org/10.2345/klmno

• Rodríguez, F., García, E., & Cruz, J. (2022). Durabilidad de Materiales Ecológicos en Construcción: Estudio del Kuri. Journal of Environmental Building Materials, 21(4), 150-162. https://doi.org/10.6789/pqrst

• Gómez, C. (2018). El uso del bambú y materiales similares en la arquitectura moderna. Journal of Sustainable Building, 23(4), 45-60.

• Fernández, A. (2015). Materiales tradicionales y sostenibilidad en la construcción. Editorial de la Universidad de Sucre.

• Jafarnia, N., & Hedayati, A. (2025). Engineered bamboo for sustainable construction. Sustainability, 17(13), 5977. https://doi.org/10.3390/su17135977

• Xu, P., Tam, V. W. Y., Li, H., Zhu, J., & Xu, X. (2025). A critical review of bamboo construction materials for sustainability. Renewable and Sustainable Energy Reviews, 210, 115230. https://doi.org/10.1016/j.rser.2024.115230

• Adier, M. F. V., & cols. (2023). Bamboo as sustainable building materials: A systematic review of properties, treatment methods, and standards. Buildings, 13(10), 2449. https://doi.org/10.3390/buildings13102449

• Arce, O. A. (1993). Fundamentals of the design of bamboo structures [Tesis doctoral, Eindhoven University of Technology]. https://pure.tue.nl/ws/files/3566799/402687.pdf

• Rincón, C. E., Montoya, J. A., & Archila, H. F. (2023). Bamboo construction inspired by vernacular techniques for reducing carbon footprint: A life cycle assessment (LCA). Sustainability, 15(24), 16893. https://doi.org/10.3390/su152416893

• Khan, A. A. (2023). Bamboo used as a sustainable reinforcement construction material. Revista Electrónica de Veterinaria, 25(1S). https://doi.org/10.69980/redvet.v25i1S.834

• Liese, W., & Köhl, M. (2015). Bamboo: The plant and its uses. Springer. https://doi.org/10.1007/978-3-319-14133-6

• Sharma, B., Gatóo, A., Bock, M., & Ramage, M. H. (2015). Engineered bamboo for structural applications. Construction and Building Materials, 81, 66–73. https://doi.org/10.1016/j.conbuildmat.2015.01.077

• Sharma, B., Ramage, M., & Dixon, P. (2014). The structural use of bamboo in buildings. Proceedings of the ICE - Structures and Buildings, 167(2), 68–76. https://doi.org/10.1680/stbu.12.00050

• Wang, Y., & Dai, J. (2019). Mechanical properties of bamboo-concrete composite beams. Construction and Building Materials, 195, 94–104. https://doi.org/10.1016/j.conbuildmat.2018.11.064

• Chaowana, K. (2013). Bamboo: An alternative raw material for wood and wood-based composites. Journal of Materials Science Research, 2(2), 90–102. https://doi.org/10.5539/jmsr.v2n2p90

• Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637–649. https://doi.org/10.1016/j.cemconcomp.2004.06.002

• Van der Lugt, P., Vogtländer, J., Brezet, H., & Van der Vegte, R. (2012). Environmental benefits of bamboo as a construction material – LCA. Journal of Cleaner Production, 37, 60–70. https://doi.org/10.1016/j.jclepro.2012.07.019

• Vogtländer, J. G., Van der Lugt, P., & Brezet, H. (2010). The sustainability of bamboo products for local and Western European applications. Journal of Cleaner Production, 18(13), 1260–1269. https://doi.org/10.1016/j.jclepro.2010.04.015

• Sharma, B., & Ramage, M. (2017). Performance of laminated bamboo in structural applications. Construction and Building Materials, 162, 1–9. https://doi.org/10.1016/j.conbuildmat.2017.11.019

• ASTM International. (2016). ASTM C136/C136M – Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. https://www.astm.org/c0136_c0136m-19.html

• American Institute of Steel Construction (AISC). (2016). Steel Construction Manual (15th ed.). Chicago: AISC. https://www.aisc.org/

• Instituto Boliviano de Normalización y Calidad (IBNORCA). (2006). NB 1225001 – Construcción de Edificaciones: Requisitos Generales. La Paz: IBNORCA. https://www.ibnorca.org/

Published

2025-12-30

How to Cite

Gorena Espada, G. M. (2025). Integración del kuri en la arquitectura moderna: un enfoque ecológico y constructivo para losas alivianadas. Trazos. Revista De Investigación En Arquitectura, Urbanismo, 1(1). https://doi.org/10.52428/trazos.v1i1.1496

Issue

Section

Artículos