Clusters, superspreading and percolation in the COVID-19 pandemic

Authors

  • Melanie Maldonado Servicios de Ciencia & Tecnologia (SC&T)

DOI:

https://doi.org/10.52428/20758944.v17i50.22

Keywords:

Clusters, COVID-19, Dispersion, Percolation, Superspreading

Abstract

Within the context of the COVID-19 pandemic, this paper has been written for the purposes of scientific popularization for non-specialists. The aim of this work is to explain the role of interaction groups in certain phenomena, such as superpropagation and percolation, which characterize the dynamics of virus propagation. Some notions necessary to describe these dynamics of an epidemic are presented, such as the number of reproduction and contact networks that, throughout this document, for simplicity is also called a cluster.

Downloads

Download data is not yet available.

References

Akira, E., Abbott, S., Kuscharski, A. J., y Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China, Wellcome Open Research, 5(67). https://doi.org/10.12688/wellcomeopenres.15842.3

Althouse, B. M., Wenger, E. A., Miller, J. C., Scarpino, S. V., Allard, A., Hébert-Dufresne, L., y Hu, H. (2020). Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. pre-print- arXiv:2005.13689. Retrieved November 28, 2020, from https://covid.idmod.org/data/Stochasticity_heterogeneity_transmission_dynamics_SARS-CoV-2.pdf

Asadi, S., Wexler, A. S., y Kappa, C. D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports, 9, 2348. https://doi.org/10.1038/s41598-019-38808-z

BBC News (2020). Coronavirus: France's first known case 'was in December'. BBC News. Retrieved November 28, 2020, from https://www.bbc.com/news/world-europe-52526554

Blumberg, S., y Lloyd-Smith, J. O. (2013). Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains. PLOS Computational Biology, 9(5), e1002993. https://dx.doi.org/10.1371%2Fjournal.pcbi.1002993

Bonasera, A., y Zhang, S. (2020). Chaos, Percolations and the Coronavirus Spread. Frontiers in Physics, 8, 171. https://doi.org/10.3389/fphy.2020.00171

CDC, Centers for Disease Control and Prevention, Coronavirus, Appendix A - Glossary of Key Terms: Close Contact. Retrieved February 05, 2021 https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html

Crawley, M. J. (2012). The R Book. Wiley. ISBN 978-1-118-44896-0.

Davis, S., Trapman, P., Lairs, H., Begon, M., y Heesterbeek, J.A.P. (2008). The abundance threshold for plague as a critical percolation phenomenon. Nature, 454, 634–637. https://doi.org/10.1038/nature07053

Drosten, C. (2020). Ein Plan für den Herbst. Die Zeit. Retrieved November 28, 2020, from https://www.zeit.de/2020/33/corona-zweite-welle-eindaemmung-massnahmen-christian-drosten

DWH, Technical Solutions Simulation Services (2020). COVID-19: The Search for Superspreaders. DWH, Technical Solutions Simulation Services. Retrieved November 28, 2020, from https://www.dwh.at/en/blog/covid-19-die-suche-nach-den-superspreadern/

Frasser, C., Cummings, D. A., Klinkenberg, D., Burke, S. S., y Ferguson, N. M. (2011). Influenza transmission in households during the 1918 pandemic. American journal of epidemiology, 174(5), 505-514. https://doi.org/10.1093/aje/kwr122

Hamner, L., Dubbel, P., y Cappron, I. (2020). High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice — Skagit County, Washington, March 2020. Morbidity and Mortality Weekly Report (MMWR), 69, 606–610. http://dx.doi.org/10.15585/mmwr.mm6919e6

Hilbe, J. M. (2011). Negative Binomial Regression (Second ed.). Cambridge, UK: Cambridge University Press. ISBN 978-0-521-19815-8.

Kersten, H. (2006). "What is percolation?" Notices of the AMS, AMS. Retrieved November 28, 2020, from http://www.ams.org/notices/200605/what-is-kesten.pdf

Kupferschmidt, K. (2020). Why do some COVID-19 patients infect many others, whereas most don’t spread the virus at all? Science Mag. Retrieved November 28, 2020, from https://www.sciencemag.org/news/2020/05/why-do-some-covid-19-patients-infect-many-others-whereas-most-don-t-spread-virus-all

Leclerc, Q. J., Fuller, N. M., y Knight, L. E. (2020). What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Research, 5, 83. https://doi.org/10.12688/wellcomeopenres.15889.2

Lloyd-Smith, J., Schreiber, S., Kopp, P., y Getz, W. M. (2005). Superspreading and the effect of individual variation on disease emergence. Nature, 438, 355-359. https://doi.org/10.1038/nature04153

Lloyd-Smith, J. O. (2007). Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases. PLoS ONE, 2(2), e180. https://doi.org/10.1371/journal.pone.0000180

Mello, Y. F., Squillante, L., Gomez, G., Seridonio, A. C., y Souza, M. (2020). Epidemics, the Ising-model and percolation theory: a comprehensive review focussed on Covid-19. arXiv e-prints. Retrieved November 28, 2020, from https://arxiv.org/abs/2003.11860

Ministry of Health Labour and Welfare (2020). Japan’s COVID-19 Response. Information on Coronavirus disease 2019 (COVID-19). Retrieved November 28, 2020, from https://www.mhlw.go.jp/content/10900000/000635891.pdf

NDR-Info, Drosten, C., y Hennig, K. (2020a). Die rote Murmel kontrollieren. Coronavirus-Update, Folge 44. Retrieved November 28, 2020, from https://www.ndr.de/nachrichten/info/coronaskript202.pdf

NDR-Info, Drosten, C., y Hennig, K. (2020b). Eine Empfehlung für den Herbst. Coronavirus Update, Folge 54. Retrieved November 28, 2020, from https://www.ndr.de/nachrichten/info/coronaskript222.pdf

Nishiura, H., Oshitani, H., Kobayashi, T., Saito, T., Sunagawa, T., Matsui, T., Wakita, T., MHLW COVID-19 Response Team, y Suzuki, M. (2020). Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). Medrxiv.org Preprints-Database. https://doi.org/10.1101/2020.02.28.20029272

Oliveira, G. (2020). Early epidemic spread, percolation and Covid-19. Journal of Mathematical Biology, 81, 1143–1168. https://doi.org/10.1007/s00285-020-01539-1

Quian, H., Miao, T., Liu, L., Zheng, X., Luo, D., y Li, Y. (2020). Indoor transmission of SARS‐CoV‐2. Indoor Air, 00, 1-7. https://doi.org/10.1101/2020.04.04.20053058

Riou, J., y Althaus, C. L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance, Europe's journal on infectious disease surveillance, epidemiology, prevention and control, 25(4), pii=2000058. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058

Schneider, M. F. (2020). Wir können Corona noch stoppen. Die Zeit Online, Wissenschaft. https://www.zeit.de/wissen/gesundheit/2020-09/corona-ausbruch-stoppen-physik-neuinfektionen-perkolation-zweite-welle

Stauffer, D., y Ammon, A. (1994). Introduction To Percolation Theory: Revised Second Edition (Second Edition ed., Vol. ISBN 9780748402533.). Taylor & Francis.

Tang, S., Mao, Y., Jones, R. M., Tan, Q., Ji, J. S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P., Wang, X., MacIntyre, C. R., y Shi, X. (2020, November). Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment International, 144, 106039. https://doi.org/10.1016/j.envint.2020.106039

Thurner, S., Klimek, P., y Hanel, R. (2020). A network-based explanation of why most COVID-19 infection curves are linear. Proceedings of the National Academy of Sciences of the United States of America, 117(37), 22684-22689. https://doi.org/10.1073/pnas.2010398117

Published

01-06-2021

How to Cite

Maldonado, M. (2021). Clusters, superspreading and percolation in the COVID-19 pandemic. Journal Boliviano De Ciencias, 17(50), 202–219. https://doi.org/10.52428/20758944.v17i50.22

Issue

Section

Scientific Vulgarization Paper