Experimental synthesis of an automotive grade urea solution for Diesel combustion engine vehicles applied as an additive for the reduction of nitrogen oxide emissions according to EURO regulations
Síntesis Experimental de una Solución de Urea grado Automotriz para Vehículos de motor de Combustión a Diésel Aplicado como Aditivo para la Reducción de Emisiones de Óxido de Nitrógeno según Normativa Euro
DOI:
https://doi.org/10.52428/20758944.v19iEspecial.453Keywords:
AdBlue, Urea, Nitrogen Oxides, SCR.Abstract
This study shows the synthesis of the automotive grade urea solution additive or AdBlue, from granulated urea from the ammonia and urea petrochemical plant (PAU), as a proposed secondary application to this raw material. The YPFB urea characterization analysis showed the following results: nitrogen content of 46.2 %, apparent density 719.33 kg/m3, Biuret content 0.93 % w/w and formaldehyde content 0.61 % w/w. The additive was characterized according to ISO 22241:2019, obtaining the following results: urea concentration 32.5%, density 1092 g/mL, refractive index 1.3836, Biuret 0.31 % w/w, aldehydes 2816.80 mg/kg, pH 9.4 at 20 °C and alkalinity 0.007 % w/w, that except for the Biuret and Aldehydes content, the additive is framed within specifications of said standard. The performance of the additive synthesized in chemistry and petroleum laboratories under the name Blue Truck was verified against other imported commercial brands AdBlue and BlueDEF, certified by the Verband der Automobilindustrie (VDA). These additives were tested in a Euro 5 specification truck, showing a reduction of NOx gases below the specified value of the Euro 5 regulation, which is 2 g/kWh for NOx.
Downloads
References
A. Fendri, P. B. (2015). AdBlue Quality Control using Impedance Spectroscopy. Proceedings SENSOR, 830-832. doi:10.5162/sensor2015/P7.3
https://doi.org/10.5162/sensor2015/P7.3 DOI: https://doi.org/10.5162/sensor2015/P7.3
A. Terzis, M. K. (2018). Splashing characteristics of diesel exhaust fluid (AdBlue) droplets impacting on urea-water solution films. Experimental Thermal and Fluid Science, 102, 152-162. doi:10.1016/j.expthermflusci.2018.11.002
https://doi.org/10.1016/j.expthermflusci.2018.11.002 DOI: https://doi.org/10.1016/j.expthermflusci.2018.11.002
Adam Polcar, J. Č. (05 de 2016). Influence of Urea Concentration on Refractive Index of AdBlue Fluid Evaluated by Regression Analysis. 64(2), 509-516. doi:10.11118/actaun201664020509
https://doi.org/10.11118/actaun201664020509 DOI: https://doi.org/10.11118/actaun201664020509
Ante Kozina, G. R. (12 de Marzo de 2020). Analysis of methods towards reduction of harmful pollutants from diesel engines. (C. M. Almeida, Ed.) Cleaner Production, 262. doi:10.1016/j.jclepro.2020.121105
https://doi.org/10.1016/j.jclepro.2020.121105 DOI: https://doi.org/10.1016/j.jclepro.2020.121105
ASTM D1747. (2009). Standard Test Method for Refractive Index of Viscous Materials. Estados Unidos : ASTM.
B. Ashok, A. J. (2022). Chapter 3 - NOx and PM trade-off in IC engines. NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines, 69-93. doi:10.1016/B978-0-12-823955-1.00003-6
https://doi.org/10.1016/B978-0-12-823955-1.00003-6 DOI: https://doi.org/10.1016/B978-0-12-823955-1.00003-6
Boxi Shen, Z. L. (Diciembre de 2017). Development of a 1D Urea-SCR system model coupling with wall film decomposition mechanism based on engine bench test data. Energy Procedia, 142, 3492-3497. doi:10.1016/j.egypro.2017.12.235
https://doi.org/10.1016/j.egypro.2017.12.235 DOI: https://doi.org/10.1016/j.egypro.2017.12.235
Calliope Panoutsou, S. G. (3 de 03 de 2021). Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Reviews, 34. doi:10.1016/j.esr.2021.100633
https://doi.org/10.1016/j.esr.2021.100633 DOI: https://doi.org/10.1016/j.esr.2021.100633
COVENIN 1138. (2018). Fertilizantes. Determinación del Nitrógeno Total (Metodo Kjeldahl). Venezuela: FODENORCA. Obtenido de http://www.sencamer.gob.ve/sencamer/normas/1138-2018.pdf
Denghui Wang, N. D. (15 de 04 de 2019). Analysis of urea pyrolysis in 132.5-190 °C. Fuel, 242, 62-67. doi:1016/j.fuel.2019.01.011
https://doi.org/10.1016/j.fuel.2019.01.011 DOI: https://doi.org/10.1016/j.fuel.2019.01.011
Diesel Technology Forum. (2023). Diesel Technology Forum. Obtenido de https://dieselforum.org/selective-catalytic-reduction-scr
DieselNET. (11 de 11 de 2022). DieselNET. Obtenido de https://dieselnet.com/news/2022/11eu.php
Eelco Mostert, H. (. (07 de 01 de 2020). United States Patente nº US 10,526,281 B2. Obtenido de https://patents.google.com/patent/US10526281B2/en
EUR-Lex. (06 de 09 de 2022). EUR-Lex Access to European Union Law. Obtenido de https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R0595
Fernando Daniel Ramos, M. S. (01 de 01 de 2016). Biocombustibles. Ciencia Hoy, 25(147), 69-73. Obtenido de eu-repo/semantics/altIdentifier/url/http://cienciahoy.org.ar/2016/01/biocombustibles/
Filip Kuternowski, M. S. (6 de 07 de 2020). Modeling of Urea Decomposition in Selective Catalytic Reduction (SCR) for Systems of Diesel Exhaust Gases Aftertreatment by Finite Volume Method. Computational Catalysis, 749. doi:10.3390/catal10070749
https://doi.org/10.3390/catal10070749 DOI: https://doi.org/10.3390/catal10070749
Guevara-Zavala, R. (2018). Desarrollo de un sistema de control y monitoreo en un banco de pruebas Urea-SCR. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (FIME), Mexico.
Hakan Caliskan, K. M. (01 de 06 de 2017). Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy, 128, 128-144. doi:10.1016/j.energy.2017.04.014
https://doi.org/10.1016/j.energy.2017.04.014 DOI: https://doi.org/10.1016/j.energy.2017.04.014
Hoon Lee, T. H. (10 de 02 de 2016). Experimental verification of optimized NOX reduction strategies in a decrepit Euro-3 diesel engine retrofitted with a cooled EGR system. Journal of Mechanical Science and Technology, 30, 2873-2880. doi:10.1007/s12206-016-0546-2
https://doi.org/10.1007/s12206-016-0546-2 DOI: https://doi.org/10.1007/s12206-016-0546-2
Ibrahim Aslan, R. A. (2015). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17, 15-27. doi:10.1007/s10098-014-0793-9
https://doi.org/10.1007/s10098-014-0793-9 DOI: https://doi.org/10.1007/s10098-014-0793-9
Instituto Nacional de Estadisticas (INE). (29 de Mayo de 2020). Instituto Nacional de Estadisticas (INE). Obtenido de Instituto Nacional de Estadisticas (INE): https://www.ine.gob.bo/index.php/publicaciones/estadisticas-del-parque-automotor-2005-2019/
ISO 22241-2. (2019). Diesel Engines, NOx reduction agent AUS32 - Part 2: Test Methods. Alemania: ISO.
Louise Gren, V. B. (08 de 2021). Effects of renewable fuel and exhaust aftertreatment on primary and secondary emissions from a modern heavy-duty diesel engine. Journal of Aerosol Science, 156. doi:10.1016/j.jaerosci.2021.105781
https://doi.org/10.1016/j.jaerosci.2021.105781 DOI: https://doi.org/10.1016/j.jaerosci.2021.105781
M. Börnhorst, O. D. (21 de 07 de 2021). Advances and challenges of ammonia delivery by urea-water sprays in SCR systems. Progress in Energy and Combustion Science, 87. doi:10.1016/j.pecs.2021.100949
https://doi.org/10.1016/j.pecs.2021.100949 DOI: https://doi.org/10.1016/j.pecs.2021.100949
Meessen, J. (10 de 11 de 2014). Urea Synthesis. Chemie Ingenieur Technik, 86(12), 2180-2189. doi:10.1002/cite.201400064
https://doi.org/10.1002/cite.201400064 DOI: https://doi.org/10.1002/cite.201400064
Ming-Feng Hsieh, J. W. (Enero de 2012). Adaptive and Efficient Ammonia Storage Distribution Control for a Two-Catalyst Selective Catalytic Reduction System. Dynamic Systems, Measurement, and Control, 134, 1. doi:10.1115/1.4005372
https://doi.org/10.1115/1.4005372 DOI: https://doi.org/10.1115/1.4005372
NTE INEN 222. (2013). Fertilizantes. Determinación del contenido de Humedad. Ecuador: Instituto Ecuatoriano de Normalización INEN. Obtenido de https://www.normalizacion.gob.ec/buzon/normas/222-1R.pdf
NTE INEN ISO 7837. (2014). Fertilizantes. Determinación de la densidad aparente sin compactar en fertilizantes de grano fino. Ecuador: Instituto Ecuatoriano de Normalización INEN. Obtenido de https://www.normalizacion.gob.ec/buzon/normas/nte_inen_iso_7837.pdf
Official Journal of the European Union, Regulation (EC). (18 de 06 de 2009). EUR-Lex.
PalaniKumar Gurusamy, U. G. (17 de 04 de 2017). Measurement of Diesel Exhaust Fluid Concentration in Urea-SCR after-Treatment System. International Journal of Precision Engineering and Manufacturing, 18(8), 1085-1092. doi:10.1007/s12541-017-0127-z
https://doi.org/10.1007/s12541-017-0127-z DOI: https://doi.org/10.1007/s12541-017-0127-z
Pavla Fojtíková, D. K. (19 de 09 de 2019). Tracking AdBlue properties during tests of selective. International Journal of Energy Research, 1-11. doi:10.1002/er.4921
https://doi.org/10.1002/er.4921 DOI: https://doi.org/10.1002/er.4921
Samsung Engineering. (2013). Business Portfolio Petrochemicals. Obtenido de https://www.samsungengineering.com/business/unit/common/buView
Sandro Gierth, S. H. (19 de 01 de 2022). Urea Conversion for Low-Temperature Selective Catalytic Reduction in a Swirled Diesel Exhaust Gas Configuration. Chemical Engineering Technology, 45(4), 610-619. doi: 10.1002/ceat.202100571
https://doi.org/10.1002/ceat.202100571 DOI: https://doi.org/10.1002/ceat.202100571
Shahariar, G. M. (Marzo de 2018). Investigation of urea aqueous solution injection, droplet breakup and urea decomposition of selective catalytic reduction systems. Mechanical Science and Technology, 32, 3473-3481. doi:10.1007/s12206-018-0651-5
https://doi.org/10.1007/s12206-018-0651-5 DOI: https://doi.org/10.1007/s12206-018-0651-5
Stamicarbon. (11 de 2017). STAMI AdBlue Technologies. Obtenido de https://www.stamicarbon.com/sc_files/142/download?token=vn2qF-Fq
Tan, L. (Noviembre de 2017). CFD studies on effects of SCR mixers on the performance of urea conversion and mixing of the reducing agent. Chemical Engineering & Processing: Process Intensification, 123, 82-88. doi:10.1016/j.cep.2017.11.003
https://doi.org/10.1016/j.cep.2017.11.003 DOI: https://doi.org/10.1016/j.cep.2017.11.003
Theodoros Grigoratos, G. F. (15 de Marzo de 2019). Real world emissions performance of heavy-duty Euro VI diesel vehicles. Atmospheric Environment, 201, 348-359. doi:10.1016/j.atmosenv.2018.12.042
https://doi.org/10.1016/j.atmosenv.2018.12.042 DOI: https://doi.org/10.1016/j.atmosenv.2018.12.042
Tina Kegl, A. K. (2020). Chapter 2 Diesel Engines. Nanomaterials for Environmental Application Fuel Additives for Diesel Engines, 5-28. doi:10.1007/978-3-030-54708-0_2
https://doi.org/10.1007/978-3-030-54708-0_2 DOI: https://doi.org/10.1007/978-3-030-54708-0_2
Tommaso Selleri, A. D. (23 de 03 de 2021). An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts, 11(3). doi:10.3390/catal11030404
https://doi.org/10.3390/catal11030404 DOI: https://doi.org/10.3390/catal11030404
Tommaso Selleri, R. G. (27 de Enero de 2022). Measuring Emissions from a Demonstrator Heavy-Duty Diesel Vehicle under Real-World Conditions - Moving Forward to Euro VII. Catalysts, 12(2), 184. doi:10.3390/catal12020184
https://doi.org/10.3390/catal12020184 DOI: https://doi.org/10.3390/catal12020184
Toyo Engineering Corporation. (2012). ACES21 Urea Process by Toyo. Toyo Engineering. Obtenido de https://www.toyo-eng.com/jp/ja/products/petrochmical/urea/technical_paper/pdf/ACES21_Brochure.pdf
Usame Demir, A. K. (24 de Agosto de 2021). Experimental investigation of the effect of urea addition to fuel on engine performance and emissions in diesel engines. FUEL, 331, 1. doi:10.1016/j.fuel.2021.122578
https://doi.org/10.1016/j.fuel.2021.122578 DOI: https://doi.org/10.1016/j.fuel.2021.122578
Verband der Automobilindustrie. (2020). Verband der Automobilindustrie. Obtenido de Verband der Automobilindustrie: https://en.vda.de/en/topics/innovation-and-technology/ad-blue/AdBlue-brand-list-and-licensees-list.html
Yihao Xie, F. P. (Abril de 2020). Diesel sulfur content impacts on Euro VI soot-free vehicles: Considerations for emerging markets. The International Council on Clean Transportation , 11, 1-15.
Yunhua Zhang, A. L. (2024). Effect of catalyst diesel particulate filter aging and catalyst loadings on particulate emission characteristics from a diesel vehicle. Journal of Environmental Sciences, 136, 35-44. doi:10.1016/j.jes.2022.10.014
https://doi.org/10.1016/j.jes.2022.10.014 DOI: https://doi.org/10.1016/j.jes.2022.10.014
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sergio Weimar Lazarte Mercado, Carla Alejandra Apaza Rojas, Jaime Hamel Fonseca
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.