Ultrahigh Molecular Weight Polyethylene: from Plastic to Orthopedic Medicine.
DOI:
https://doi.org/10.52428/20758944.v16i49.350Keywords:
Biopolymer, Orthopedic implant, Polyethylene, UHMWPEAbstract
The versatility of biopolymers, with the constant need for alternative materials for orthopedic prostheses, and the increasing demand for biocompatible materials, led scientists to develop Ultra High Molecular Weight Polyethylene (UHMWPE), used in orthopedic prostheses and total replacements of hip and knee. The most relevant characteristics that defend its applicability to medicine are presented, with a relevant historical support. Therefore, this research is dedicated to the uses of UHMWPE, its impact on medicine, along with its structure and properties that makes it so unique, emphasizing on the applications in total joint replacements, whose results were structured after the bibliographic review of degree projects, data sheets of companies dedicated to its production, and scientific articles related to the subject, through the collection and analysis of the most relevant data. Information is provided through the methods and procedures for the manufacture of UHMWPE, in addition to some advantages of the use of this particular polyethylene, which offers a better performance thanks to its mechanical properties, it stands out among other biopolymers for its high resistance to impacts along with a low coefficient of friction and considerable hardness, placing it among the first positions regarding its applicability in the field of implants in orthopedic medicine.
Downloads
References
American Society of Testing Materials International. (1933). Methods of Testing Rubber Hose (Withdrawn, replaced by ASTM D380) (ASTM D177). Recuperado de: https://www.astm.org/DATABASE.CART/WITHDRAWN/D177. htm(20 de septiembre de 2020)
American Society of Testing Materials International. (2012). Standard Test Methods for Rubber Hose (ASTM D380). Recuperado de: https://www.astm.org/DATABASE.CART/HISTORICAL/D380-94R12. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2013). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement (ASTM D792). Consultado: 20 de septiembre del 2020. Recuperado de: https://www.astm.org/DATABASE.CART/HISTORICAL/D792-13. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2013). Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies (ASTM D149). Recuperado de: https://www.astm.org/DATABASE.CART/HISTORICAL/D149-09R13. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2014). Standard Test Methods for DC Resistance or Conductance of Insulating Materials (ASTM D257). Recuperado de: https://www.astm.org/Standards/D257. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2014). Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting (ASTM D1894). Recuperado de: https://www.astm.org/Standards/D1894. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2014). Standard Test Method for Tensile Properties of Plastics (ASTM D638). Recuperado de: https://www.astm.org/Standards/D638. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2015). Standard Test Method for Rubber Property-Durometer Hardness (ASTM D2240). Recuperado de: https://www.astm.org/Standards/D2240. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2015). Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry (ASTM D3418). Recuperado de: https://www.astm.org/Standards/D3418. htm (20 deseptiembre de 2020)
American Society of Testing Materials International. (2016). Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between −30°C and 30°C with a Vitreous Silica Dilatometer (ASTM D696). Recuperado de: https://www.astm.org/Standards/D696. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2017). Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials (ASTM D1895). Recuperado de: https://www.astm.org/Standards/D1895. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2017). Standard Test Method for Vicat Softening Temperature of Plastics (ASTM D1525). Recuperado de: https://www.astm.org/Standards/D1525. htm(20 de septiembre de 2020)
American Society of Testing Materials International. (2018). Standard Specification for Ultra-HighMolecular-Weight Polyethylene Molding and Extrusion Materials (ASTM D4020). Recuperado de: https://www.astm.org/Standards/D4020. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2018). Standard Test Methods for Particle Size (Sieve Analysis) of Plastic Materials (ASTM D1921). Recuperado de: https://www.astm.org/Standards/D1921. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2018). Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics (ASTM D256). Recuperado de: https://www.astm.org/Standards/D256. htm (20 de septiembre de 2020)
American Society of Testing Materials International. (2018). Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position (ASTM D648). Recuperado de: https://www.astm.org/Standards/D648. htm (20 de septiembre de 2020)
Beijing Tongyizhong New Material Technology Corporation. (2020). "Aplicaciones de las fibras UHMWPE". [Video online]. Recuperado de: http://tyzfibersvideo.com/applications-of-uhmwpe-fiber- (25 de abril de 2020)
Benavides, M. (2000). Proyecto de investigación aplicada: Aplicaciones de los polímeros en la medicina avanzada. Servicio Nacional de Aprendizaje SENA. Cali, Colombia. Recuperado de: https://pdfs.semanticscholar.org/a27f/a3da55d5d91c4adf6bcf1622a559e7a90c56.pdf 14 de abril de 2020) https://doi.org/10.23850/22565035.997 DOI: https://doi.org/10.23850/22565035.997
Braskem América. (2017). Ultra High Molecular Weight Polyethylene (UHMWPE) [Folleto]. Filadelfia, Estados Unidos. Recuperado de: http://www.utec.com.br/portal/principal/arquivos/UTEC%20
Brochure_April%202017.pdf (20 de septiembre de 2020)
Braskem América. (2018). Ultra High Molecular Weight Polyethylene UTEC 6540G [Ficha de Datos]. Filadelfia, Estados Unidos. Recuperado de: https://www.braskem.com.br/busqueda-deproductos?p=721 (15 de abril de 2020)
Collet, Ambrós., (2004). Nuevas poliesteramidas biodegradables derivadas de ácido glicólico y aminoácidos con aplicación en biomedicina (Tesis de Maestría). Escola Tècnica Superior d'Enginyeria Industrial de Barcelona [ETSEIB]. Barcelona, España. Recuperado de: https://upcommons.upc.edu/handle/2099.1/3093 (20 de septiembre de 2020)
Coreño-Alonso, J y Méndez-Bautista M. T. (2010). Relación estructura-propiedades de polímeros. Educación química, 21(4), 291-299. Recuperado de: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2010000400006 (10 de abril de 2020) https://doi.org/10.1016/S0187-893X(18)30098-3 DOI: https://doi.org/10.1016/S0187-893X(18)30098-3
Deutsches Institut für Normung. (1984). Testing Of Thermal Insulating Materials; Determination Of Thermal Conductivity By Means Of The Guarded Hot Plate Apparatus; Conversion Of The Measured Values For Building Applications (DIN 52612). Recuperado de: https://infostore.saiglobal.com/en-us/Standards/DIN-52612-2-1984-387227_SAIG_DIN_DIN_879629/ (20 de septiembre de 2020)
Echezarreta, R. D., & Echezarreta, Y. D. (2009). Importancia De La Rehabilitación Implantológica Frente A Otros Tipos De Rehabilitación Protésica. Revista Habanera de Ciencias Médicas, 8(4) Recuperado de: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2009000400028&lng=es&tlng=es (10 de abril de 2020)
Gómez, G. (2014)."Tribología moderna en artroplastia total de cadera: pros y contras". Hospital Ángeles Mocel.
Hermida, E. (2011). Polímeros Guía Didáctica. Recuperado de: inet.edu.ar/wp-content/uploads/2012/11/09_Polimeros.pdf (10 de abril de 2020)
International Organization for Standardization. (1998). Plastics - Ultra-high-molecular-weight polyethylene (PE-UHMW) moulding and extrusion materials - Part 2: Preparation of test specimens and determination of properties (ISO 11542-2). Recuperado de: https://www.iso.org/standard/21108. html (20 de septiembre de 2020)
International Organization for Standardization. (2001). Plastics - Determination of hardness - Part 1: Ball indentation method (ISO 2039-1). Recuperado de: https://www.iso.org/standard/31264. html (20de septiembre de 2020)
International Organization for Standardization. (2003). Plastics and ebonite - Determination of indentation hardness by means of a durometer (Shore hardness) (ISO 868). Recuperado de: https://www.iso.org/standard/34804. html (20 de septiembre de 2020)
International Organization for Standardization. (2010). Plastics - Determination of Charpy impact properties - Part 1: Non-instrumented impact test (ISO 179). Recuperado de: https://www.iso.org/standard/44852. html (20 de septiembre de 2020)
International Organization for Standardization. (2013). Plastics - Thermoplastic materials -Determination of Vicat softening temperature (VST) (ISO 306). Recuperado de: https://www.iso.org/standard/55647. html (20 de septiembre de 2020)
International Organization for Standardization. (2012). Plastics - Methods for determining the densityof non-cellular plastics - Part 1: Immersion method, liquid pyknometer method and titration method (ISO 1183). Recuperado de: https://www.iso.org/standard/55640. html (20 de septiembre de 2020)
International Organization for Standardization. (2012). Plastics - Determination of tensile properties- Part 1: General principles (ISO 527). Recuperado de: https://www.iso.org/standard/56045. html (20 de septiembre de 2020)
Lavernia, C., Cardona, D. y Alcerro J. (2010). Polietileno. Acta Ortopédica Mexicana. (24)3, 197-204. National Institute of Biomedical Imaging and Bioengineering [NIBIB]. (2017). Biomaterials. Recuperado de: https://www.nibib.nih.gov/science-education/science-topics/biomaterials (24 de abril de 2020)
Osorio-Delgado, M. A., Henao-Tamayo, L. J., Velásquez-Cock, J. A., Cañas-Gutiérrez, A. I., RestrepoMúnera, L. M., Gañán-Rojo, P. F., Zuluaga-Gallego, R. O., Ortiz-Trujillo, I C., y Castro-Herazo, C. I. (2017). Aplicaciones biomédicas de biomateriales poliméricos. Revista de la Universidad Nacional de Colombia. Medellín, Colombia. DOI: https://doi.org/10.15446/dyna.v84n201.60466
Pino, J., (2019). Biomateriales en cirugía ortopédica y traumatología: Una continua evolución hacia la ingeniería tisular (Proyecto de Grado). Instituto de España Real Academia de Medicina de Galicia. Coruña, España. Recuperado de: https://www.ramycga.org/archivosBlog.ashx?notid=28936&nom=.pdf (10 de abril de 2020)
Palenzuela, A. (2015). Las poliolefinas en la industria actual: Del petróleo a los plásticos. (Proyecto de Grado). Escuela Técnica Superior De Ingenieros De Minas Y Energía. Madrid, España. Recuperado de: http://oa.upm.es/40113/1/PFG_ALBERTO_PALENZUELA_TEJERO.pdf (10 de abril de 2020)
Pérez, B. y San Román, J. (2016). Biomateriales: Aplicación a cirugía ortopédica y traumatológica (Proyecto de Grado). Universidad Carlos III de Madrid. Madrid, España. Recuperado de: https://core.ac.uk/download/pdf/29402164.pdf (10 de abril de 2020)
Pontificia Universidad Católica de Valparaíso. (2015). HDPE, Polietileno de alta densidad. Recuperado de: https://wiki.ead.pucv.cl/images/d/d4/Clase_3_construcci%C3%B3n_1_n%C3%A1utica_2015_HDPE.pdf (10 de abril de 2020)
Ries, M. (2005). Enhanced polyethylene implants: have we been there before?. US National Library of Medicine National Institutes of Health. (54), 189-92.
Roca-Girón, I. y Calderón, J. E. (2005). Estudio De Las Propiedades Y Aplicaciones Industriales Del Polietileno De Alta Densidad (PEAD) (Tesis de Grado Facultad De Ingeniería Escuela De Ingeniería Química. Universidad De San Carlos De Guatemala). Recuperado de: http://biblioteca.usac.edu.gt/tesis/08/08_0639_Q.pdf (13 de abril de 2020)
Scrholl, V. (28 de septiembre de 2016). El Polietileno, como un consumo masivo. Periódico Digital de la Universidad Nacional de Entre Ríos (UNER Noticias). Recuperado de: https://noticias.uner.edu.ar/entrevistas/7050/el-polietileno-como-un-consumo-masivo (20 de abril de 2020)
Verband Deutscher Elektrotechniker. (2014). ELECTRIC STRENGTH OF INSULATING MATERIALS -TEST METHODS - PART 1: TESTS AT POWER FREQUENCIES (VDE 0303-21). Recuperado de: https://infostore.saiglobal.com/en-us/standards/vde-0303-21-2014-1112322_saig_vde_vde_2584582/ (20 deseptiembre de 2020)
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Raquel Calderón Gallardo, Adrián Chávez Alanes, Matheus Santana Cedo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.