Fuzzy Controller for Aerodynamic Leviting Systems Using Arduino Uno.

Authors

  • Elías Prudencio Chavez Jaldin
  • Edgar Roberto Ramos Silvestre
  • Dorian Alexander Romero Alcocer
  • Mauricio Chirinos Caero

DOI:

https://doi.org/10.52428/20758944.v16i48.348

Keywords:

Aerodynamic levitation, Nonlinear system, Diffuse logic, Fuzzy control, Mathematical model

Abstract

The Boolean logic proposed by von Neumann presents problems when dealing with certain tasks in the real world. Fuzzy systems influence Boolean logic by assigning intermediate values between 1 and 0, emulating the reasoning of the human being. Aerodynamic levitating systems are characterized by their non-linear behavior and make the fuzzy system a suitable candidate for control.
For the design of the fuzzy control, the mathematical model of the aerodynamic levitating systems is first calculated from a sphere and a beam. The used actuators and their aerodynamic properties are explained: Fan and Brushless motor. Simulation of the differential equations calculated in SIMULINK (tool used for model-based designs) was performed under non-standard  inputs. The constants were adjusted with the actual data obtained using MATLAB (Matrix Laboratory). The input and output linguistic variables were assigned with their respective partitions using MATLAB. Fuzzy control designs were simulated in SIMULINK obtaining optimal results. These values were implemented with slight tuning changes in the integrated development environment of the Arduino electronic development board and the actual response data was saved. The simulation results were compared, obtaining consistency with the simulated and real results. Fuzzy control system helped make proper and easy control for aerodynamic levitating systems.

Downloads

Download data is not yet available.

References

Artero, Ó. T. (2013). ARDUINO. Curso práctico de formación: RC Libros.

Bastianon, R. A. (2008). Cálculo y diseño de la hélice óptima para turbinas eólicas. Buenos Aires, 1-48.

Chacon, J., Saenz, J., Torre, L., Diaz, J., & Esquembre, F. (2017). Design of a low-cost air levitation system for teaching control engineering. Sensors, 17(10), 2321. https://doi.org/10.3390/s17102321 DOI: https://doi.org/10.3390/s17102321

Chipdip. (2020). JF0825B1H-R, ventilador de 12V, 80x80x25mm, rodamiento de 3500 rpm. 2020, from https://www.chipdip.ru/product/jf0825b1h

de Saavedra, J. M. G. A., & Acher, G. R. (2012). Introducción a la aerodinámica potencial: Editorial Paraninfo.

Del Brío, B. M., & Molina, A. S. (2002). Redes neuronales y sistemas difusos Bonifacio Martín del BRio, Alfredo Sanz Molina (2 ed.): Alfaomega Ra-Ma.

Escaño, J. M., Algarın, D., & Ortega, M. (2004). IDENTIFICACION Y CONTROL DE POSICION DE UN SISTEMA DE LEVITACION NEUMATICA. 1-7. http://intranet.ceautomatica.es/old/actividades/jornadas/XXV/documentos/39-anessiuore.pdf

HETPRO. (2020). MOTOR BRUSHLESS A2212/13T 1000KV. Retrieved 2020, from https://hetpro-store. com/motor-brushless-a2212-13t-1000-kv/

Jamicon. (2020). DC FAN 80x80x25 mm. 2020, from https://static.chipdip.ru/lib/245/DOC000245581. pdf

Jernigan, S. R., Fahmy, Y., & Buckner, G. D. (2008). Implementing a remote laboratory experience into a joint engineering degree program: Aerodynamic levitation of a beach ball. IEEE Transactions on Education, 52(2), 205-213. https://doi.org/10.1109/TE.2008.924217 DOI: https://doi.org/10.1109/TE.2008.924217

Kuo, B. C. (2010). Automatic control systems (pp. 149-150). USA: John Wiley & Sons, Inc. https://doi.org/10.1109/TAC.2010.2069430 https://doi.org/10.1007/s12555-010-0410-6 https://doi.org/10.1007/s12555-010-0426-y DOI: https://doi.org/10.1007/s12555-010-0410-6

Kuzhandairaj, J. C. (2018). Development, control and testing of an air levitation system for educational purpose. (Corso di Laurea Magistrale in Ingegneria dell'Automazione ), POLITECNICO DI MILANO 1863, ITALIA.

Sivanandam, S., Sumathi, S., & Deepa, S. (2007). Introduction to fuzzy logic using MATLAB (Vol. 1): Springer. https://doi.org/10.1007/978-3-540-35781-0 DOI: https://doi.org/10.1007/978-3-540-35781-0

Timmerman, P., & Van der Weele, J. P. (1999). On the rise and fall of a ball with linear or quadratic drag. American Journal of Physics, 67(6), 538-546. https://doi.org/10.1119/1.19320 DOI: https://doi.org/10.1119/1.19320

Published

30-06-2020

How to Cite

Chavez Jaldin, E. P. ., Ramos Silvestre, E. R. ., Romero Alcocer, D. A. ., & Chirinos Caero, M. . (2020). Fuzzy Controller for Aerodynamic Leviting Systems Using Arduino Uno. Journal Boliviano De Ciencias, 16(48), 66–84. https://doi.org/10.52428/20758944.v16i48.348

Issue

Section

Applied Engineering Project

Most read articles by the same author(s)