Identification of people without a mask using Deep Learning

Authors

  • Giovanny German Rocha Vallejo Universidad Privada del Valle image/svg+xml

DOI:

https://doi.org/10.52428/20758944.v18i52.236

Keywords:

Computer vision, Deep learning, Convolutional neural networks, Object detection, YOLO

Abstract

This work makes use of convolutional neural networks to detect people with and without mask, due to the current situation of COVID-19 and in accordance with the biosecurity measures instructed by government and health institutions, it has been proven in a way that the use of surgical masks or chinstraps help to reduce the risk of contagion of the disease, the need to be able to detect or identify people who are not wearing a mask becomes evident, not complying with this biosecurity measure and putting a group of the population at risk.

Initially, a training repository was established consisting of images of people with and without masks, these images were obtained from different sources.

Three types of convolutional neural networks have been trained and compared, Faster R-CNN, SSD (Single Shot MultiBox Detector) and YOLO (You Only Look Once), each one performs the detection of people with and without masks, standing out one from the other due to its speed, precision, or performance.

To obtain the object detection models, Darknet and TensorFlow Object Detection API frameworks have been used, Google Colab was used too, which, being a free provider, it also provided powerful computational features.

Downloads

Download data is not yet available.

References

Bisong, E. (2019). Google Colaboratory. En Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress. https://doi.org/10.1007/978-1-4842-4470-8_7 DOI: https://doi.org/10.1007/978-1-4842-4470-8

Bochkovskiy, A. (2021). GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet). Recuperado el 27 de Marzo de 2021, de GitHub: https://github.com/AlexeyAB/darknet

Bochkovskiy, A. (2021). Running a YOLOv4 Object Detector with Darknet in the Cloud! (GPU ENABLED). Recuperado el 27 de Marzo de 2021, de Google Colab: https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv:2004.10934.

Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, (págs. 1440-1448). https://doi.org/10.1109/ICCV.2015.169 DOI: https://doi.org/10.1109/ICCV.2015.169

Joshi, N. (2020). How to fine-tune your artificial intelligence algorithms. Recuperado el 20 de Abril de 2022, de Allerin: https://www.allerin.com/blog/how-to-fine-tune-your-artificial-intelligence-algorithms

Khandelwal, R. (2019). COCO and Pascal VOC data format for Object detection. Recuperado el 28 de Marzo de 2021, de Towards Data Science: https://towardsdatascience.com/coco- data-format-for-object-detection-a4c5eaf518c5

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. (2016). SSD: Single Shot MultiBox Detector. European Conference on Computer Vision, (pp. 21-37). https://doi.org/10.1007/978-3-319-46448-0_2 DOI: https://doi.org/10.1007/978-3-319-46448-0_2

Padilla, R., Netto, S. L., & da Silva, E. A. (2020). A Survey on Performance Metrics for Object-Detection Algorithms. International Conference on Systems Signals and Image Processing. https://doi.org/10.1007/978-3-319-46448-0_2 DOI: https://doi.org/10.1109/IWSSIP48289.2020.9145130

Pan, S. J., Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, vol. 22, (pp. 1345-1359), doi: https://doi.org/10.1007/978-3-319-46448-0_2 DOI: https://doi.org/10.1109/TKDE.2009.191

Ponnusamy, A. (24 de Marzo de 2021). Preparing Custom Dataset for Training YOLO Object Detector. Obtenido de Vision Geek: https://www.visiongeek.io/2019/10/preparing- custom-dataset-for-training-yolo-object-detector.html

Redmon, J. (2013-2016). Darknet: Open Source Neural Networks in C. Obtenido de http://pjreddie.com/darknet/

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. IEEE. https://doi.org/10.1109/CVPR.2016.91 DOI: https://doi.org/10.1109/CVPR.2016.91

TensorFlow 2 Detection Model Zoo. (1 de Mayo de 2021). Obtenido de GitHub:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_d etection_zoo.md

TensorFlow. (1 de Mayo de 2021). Obtenido de www.tensorflow.org https://doi.org/10.1007/978- 1-4842-6373-0_1

TensorFlow Object Detection API. (1 de Mayo de 2021). Obtenido de https://github.com/tensorflow/models/tree/master/research/object_detection

Published

29-06-2022

How to Cite

Rocha Vallejo, G. G. (2022). Identification of people without a mask using Deep Learning. Journal Boliviano De Ciencias, 18(52), 34–44. https://doi.org/10.52428/20758944.v18i52.236

Issue

Section

Applied Engineering Project