Comparative study of the kinetic reformation of methane with steam process for obtaining synthesis gas and production of methanol for the based on 5 petrochemical technologies

Authors

  • Valeria Elizabeth Sandoval Cossío Universidad Privada del Valle
  • Martha Liliana Siles Camacho Universidad Privada del Valle

DOI:

https://doi.org/10.52428/20758944.v17i50.18

Keywords:

Syngas, Methanol, Autothermal Reforming, Steam methane Reforming

Abstract

This study focuses on the analysis of the kinetics of the methane reforming process with steam of five world-renowned technologies to obtaining syngas, true to the production of methanol and defined on two gasification processes: Steam reforming (SMR) and autothermal reforming (ATR). These simulations have been developed with specific information on each patented process, operational data, flow diagrams and others. The five technologies analyzed show that the type of reforming to be used depends on the final product. In methanol case, the ideal stoichiometric composition is called the “M”, this value is calculated by the optimal ratio of the molar fractions between carbon oxides and hydrogen, which must be equal to 2.

The SMR process tends to produce hydrogen in large quantities, unlike the ATR process that produces syngas rich in carbon monoxide, outside of this analysis, other historical factors of the process such as the capacity of the plant, determine its selection: capacities Less than 3000 tons/day, the SMR process is chosen, from 3000-5000 tons/day the Two Step Reforming process (combination of SMR and ATR) is preferable and if the production exceeds 5000 tons/day the ATR process is the best option.

The simulation of each technology and the development of the kinetic conversion models of the reforming reactors were designed for a methane gas flow corresponding to 89% of 68 million standard cubic feet per day (MMSCFD) of natural gas, with an approximate methanol synthesis capacity of 1900 tons/day, 30 MMSCFD recirculation system and carbon dioxide feed modifications.

Downloads

Download data is not yet available.

References

Aspentech (2020). About Aspen Tech. Recuperado de: https://www.aspentech.com/en/about-aspentech

Basile, A., Francesco, D. (2018). Methanol Science and engineering. First Edition. Elsevier.

Chauvel, A., Lefebvre, G. (1989). Petrochemical Processes, Synthesis gas derivatives and major hydrocarbons. Editions Technips.

Hiller, H., Reimert, R., Stonner, H.M., (2012). Gas production. Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a12_169.pub3

Hougen, O., Watson, K., Ragatz, R. (1978). Principios de los Procesos Químicos. Barcelona España: Editorial Reverte.

Hydrocarbon Processing (2012). Gas Processes Handbook. Houston, TX: Hydrocarbon Processing.

Hydrocarbon Processing (2010). Petrochemical Processes Handbook. Houston, TX: Hydrocarbon Processing.

Juan, R., Laborde, M., Gozalez, P., Ayastuy, J., Gutierrez, M. (1994). Transformación Catalítica del gas natural a gas de síntesis. CIT Información Tecnológica.

Moulijn, J., Makkee, M., Van Diepen, A. (2013). Chemical Process Technology. Second Edition. Netherlands; John Wiley & Sons, Ltd.

Nielsen, J., Nielsen, T. (2001). Large-scale Hydrogen Production. CATTECH, 6, 150–159 (2002)https://doi.org/10.1023/A:1020163012266

Nielsen, R., Christiansen, L. (2011). Concepts in syngas manufacture. Catalytic Science series- Vol 10. Covent Garden; London: Imperial College Press. https://doi.org/10.1142/p717

Petersen, A., Dybkjaer, I., Ovensen, V., Schjodt, C., Sehested, J., Thompsen, G. (2011). Natural gas to synthesis gas- Catalyst and catalytic Processes. Journal of Natural Gas Science and Engineering, 3(2), 423-459. https://doi.org/10.1016/j.jngse.2011.03.004

Reimert, R., Marschner, F., Renner, H.J., Boll, W., Supp, E., Brejc, M., Liebner, W., Schaub G., (2011).’’ Gas Production, 2. Processes’’. Doi: 10.1002/14356007.o12_o01

ThyssenKrupp (2017). Hydrogen-Key-to-any-Refinery. Recuperado de: https://www.thyssenkrupp-industrial-solutions.com/

Villar, J. (2016). Oxidación parcial de metano sobre catalizadores NiAl2O4/CeO2. Universidad de País del Vasco, España.

Published

01-06-2021

How to Cite

Sandoval Cossío, V. E., & Siles Camacho, M. L. (2021). Comparative study of the kinetic reformation of methane with steam process for obtaining synthesis gas and production of methanol for the based on 5 petrochemical technologies. Journal Boliviano De Ciencias, 17(50), 112–148. https://doi.org/10.52428/20758944.v17i50.18

Issue

Section

Scientific Paper