Operation criteria for Artificial Intelligence in the use of traditional medicine for self-care in health

Authors

  • Caballero Medina Natalia AikonSoft, Cochabamba, Bolivia
  • Carlos Centro Cultural Kuska de Sabidurías Ancestrales. Cochabamba. Bolivia.
  • Peredo Albornoz Gabriel Universidad Santo Tomás, Chile

DOI:

https://doi.org/10.52428/20758944.v20i56.1209

Keywords:

Artificial Intelligence, Digital Health, Traditional Medicine, Medicinal Plants, Self-Management, Global Health

Abstract

The guidelines defined in the Digital Health Strategy 2020 - 2025; the WHO Strategy on Traditional Medicine (2014 - 2025) and the Global Initiative on AI for Health allow understanding the current scenario and the road ahead towards universal health coverage. In this context, this work focuses on the management of information in Artificial Intelligence on the uses and application of medicinal plants of the Andean Amazonian Traditional Medicine for self-care in health. In the framework of the prevention of future or possible pandemics, this works applies a reverse engineering model to characterizing some elements and guidelines that allow the abstraction of notions of quality, safety, rigor and adequate and effective use of medicinal plants used in traditional Andean Amazonian and analyze its potential applications on AI technologies development from indigenous knowledge and the understanding of the natural patterns that guide the balance of the ecosystem.

Downloads

Download data is not yet available.

References

Adibaru Kiflie, M., Prasad Sharma, D., & Abebe Haile, M. (2024). Deep learning for Ethiopian indigenous medicinal plant species. Journal of Ayurveda and Integrative Medicine, 100987. Obtenido de https://pubmed.ncbi.nlm.nih.gov/39546923/

https://doi.org/10.1016/j.jaim.2024.100987

PMid:39546923 PMCid:PMC11613182

Alexander, S., Shareck, M., & Glenn, N. M. (2023). Capturing the Lived Experience of Place in Health Promotion Research: In Situ Methodologies. En D. P. Jourdan, Global Handbook of Health Promotion Research (págs. 115-128). Springer, Cham.

https://doi.org/10.1007/978-3-031-20401-2_11

Amabie, T., Chibueze Izah, S., & Chidozie Ogwu, M. &. (2024). Harmonizing Tradition and Technology: The Synergy of Artificial Intelligence in Traditional Medicine. En S. e. Izah, Herbal Medicine Phytochemistry. Reference Series in Phytochemistry (págs. 1-23). Springer, Cham. https://doi.org/10.1007/978-3-031-21973-3_70-1

Andres, F., Kawtrakul, A., Pechsiri, C., & Rajbhandari, S. (2009). Problems-Solving Map Extraction with Collective ntelligence Analysis and Language Engineering. En V. Prince, & M. Roche, Information Retrieval in Biomedicine: Natural Language Processing for Knowledge Integration (págs. 325-343). Non identified: IGI Global. Obtenido de https://www.igi-global.com/chapter/problems-solving-map-extraction-collective/23069

https://doi.org/10.4018/978-1-60566-274-9.ch018

Asif, N. (2003). Reverse Engineering Methodology to Recover the Design Artifacts: A Case Study. Software Engineering Research and Practice, 932-938.

Belli, L., & Gaspar, W. (2023). The quest for AI sovereignty, transparency and accountability. IGF - Getulio Vargas Foundation. Obtenido de https://www.intgovforum.org/en/filedepot_download/288/26421

Biggerstaff, T. J. (1989). Design recovery for maintenance and reuse. Computer, 22(7), 36-49.

https://doi.org/10.1109/2.30731

Booth, D., & Jansen, B. J. (2009). A Review of Methodologies for Analyzing Websites. En B. J. Jansen, A. Spink, & I. Taksa, Handbook of Research on Web Log Analysis (págs. 143-164). Non identified: IGI Global. https://doi.org/10.4018/978-1-59904-974-8.ch008

Canavera, L. (2023). Blending indigenous knowledge and artificial intelligence to enable adaptation. The circle(1), 13. Obtenido de https://www.arcticwwf.org/magazine-issues/2023/innovating-for-a-better-future/

Chikofsky, E., & Cross, J. (1990). Reverse engineering and design recovery: a taxonomy. IEEE Software, 7(1), 13-17.

https://doi.org/10.1109/52.43044

Cossio, I. (2024). Detección automática de imágenes de plantas medicinales usando redes neuronales artificiales. Proyecto de Grado, Universidad Mayor de San Simón. Obtenido de https://www.cs.umss.edu.bo/rep_tesis.jsp?codigo=3370&tipo_tes=1

Dragan, I. M., & Isaic-Maniu, A. (2013). Snowball Sampling Completion. Journal of Studies in Social Sciences, 160-177. Obtenido de https://core.ac.uk/download/pdf/229607586.pdf

Estrada Lugo, E. (2002). Plantas Medicinales de México. Texcoco, México: Universidad Autónoma de Chapingo.

Etikan, I. e. (2015). Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics, 1. Obtenido de https://www.sciencepublishinggroup.com/article/10.11648/j.ajtas.20160501.11

https://doi.org/10.11648/j.ajtas.20160501.11

Eysenbach, G. (2001). What is e-health? Journal of Medical Internet Research, 3(2). https://doi.org/10.2196/jmir.3.2.e20

PMid:11720962 PMCid:PMC1761894

Foley, R., & et al. (2020). Disciplined research in undisciplined settings": Critical explorations of in situ and mobile methodologies in geographies of health and wellbeing. AREA, 514-522. https://doi.org/10.1111/area.12604

Forslund, M., Mathieson, K., Djibo, Y., Mbindyo, C., Lugangira, N., & Balasubramaniam, P. (2024). Strengthening the evidence base on the use of digital health technologies to accelerate progress towards universal health coverage. Oxford Open Digital Health, 2. Obtenido de

https://doi.org/10.1093/oodh/oqae033

G., a., S., G., S.M.A., A., F., T., & M.H., G. R. (2022). Prevalence of self-medication during COVID-19 pandemic: A systematic review and meta-analysis. Front Public Health, 10. https://doi.org/10.3389/fpubh.2022.1041695

PMid:36408026 PMCid:PMC9669079

Ghimire, P. (2021). Digitalization of Indigenous Knowledge in Nepal. Review article. Acta Informatica Malaysia, 42-47. Obtenido de https://actainformaticamalaysia.com/archives/AIM/2aim2021/2aim2021-42-47.pdf

https://doi.org/10.26480/aim.01.2021.42.47

Girault, L. (1987). Kallawaya: curanderos itinerantes de Los Andes . La Paz, Bolivia: Quipus.

González Zepeda, L. E., & Martínez Pinto, C. E. (2023). Inteligencia Artificial centrada en los Pueblos Indígenas. Perspectivas desde América Latina y el Caribe. Montevideo, Uruguay: UNESCO.

Green Stócel, A. (2011). Significados de Vida: Espejo de nuestra Memoria en Defensa de la Madre Tierra. Medellín: Universidad de Antioquia. Obtenido de https://bibliotecadigital.udea.edu.co/bitstream/10495/6935/1/AbadioGreen_2011_MadreTierra.pdf

Gupta, C., & Sharma, A. (2024). Reviving Indigenous Languages using Machine Learning. Insights2Techinfo, 1. Obtenido de https://insights2techinfo.com/reviving-indigenous-languages-using-machine-learning/

Hubbard, T. L. (2002). Some Correspondences and Similarities of Shamanism and Cognitive Science: Interconnectedness, Extension of Meaning and Attribution of Mental States. Anthropology of Consciousness, 26-45. https://doi.org/10.1525/ac.2002.13.2.26

Hubbard, T. L. (2003). Further Correspondences and Similarities of Shamanism and Cognitive Science: Mental Representation, Implicit Processing, and Cognitive Structures. Anthropology of Consciousness, 40-74.

https://doi.org/10.1525/ac.2003.14.1.40

IKSLabs. (20224). Protocols for Non-Indigenous People Working with Indigenous Knowledge. Algoma: Deakin University. Obtenido de https://justiceactionmaribyrnong.com/wp-content/uploads/2024/09/A_protocol_bundle_for_working_with_Indigenous_knowledge_1725078558.pdf

Jaarsma, T., Strömberg, A., Dunbar, S., Fitzsimons, D., Lee, C., Middleton, S., . . . B., R. (2020). Self-care research: How to grow the evidence base? International Journal of Nursing Studies, 103555.

https://doi.org/10.1016/j.ijnurstu.2020.103555

PMid:32199150

Katz, J., & Csordas, T. J. (2003). Phenomenological ethnography in sociology and anthropology. Sage Journals, 275-288.

https://doi.org/10.1177/146613810343001

Khan, S. e. (2022). Did the COVID-19 pandemic impact help-seeking behavior for seizure management? A Google Trends™ study. Epilepsy and Behavior, 108489. https://doi.org/10.1016/j.yebeh.2021.108489

PMid:34920346 PMCid:PMC8669502

Lee, D. (2024). Silicon Snowball Sampling: A Dynamic Approach to Online Data Collection. 7th International Conference on New Trends in Social Sciences (págs. 1-10). Prague, Czech Republic: Diamond Scientific Publishing. Obtenido de https://www.researchgate.net/publication/383649541_Silicon_Snowball_Sampling_A_Dynamic_Approach_to_Online_Data_Collection

Lewis, J. (2020). Indigenous Protocol and Artificial Intelligence Position Paper. The Initiative for Indigenous Futures and the Canadian Institute for Advanced Research (CIFAR). doi:10.11573

Lewis, J. E. (2024). Abundant intelligences: placing AI within Indigenous knowledge frameworks. Ai & Society, 0.

https://doi.org/10.1007/s00146-024-02099-4

Llamazares, A. M. (2013). Occidente Herido: El Potencial Sanador del Chamanismo en el Mundo Contemporáneo. Diversidad, 67-104. Obtenido de https://ri.conicet.gov.ar/bitstream/handle/11336/28753/CONICET_Digital_Nro.6063bdfe-9243-4517-8147-5c45a3eece42_A.pdf?sequence=2&isAllowed=y

Lu, L. e. (2024). AI: Bridging Ancient Wisdom and Modern Innovation in Traditional Chinese Medicine. JMIR Medical Informatics, e58491.

https://doi.org/10.2196/58491

PMid:38941141 PMCid:PMC11245652

Luccioni, S., Trevelin, B., & Mitchell, M. (3 de Septiembre de 2024). Hugging Face. Obtenido de https://huggingface.co/blog/sasha/ai-environment-primer

Luna, L. E. (1986). Vegetalismo: Shamanism Among the Mestizo Population of the Peruvian Amazon. Almqvist & Wiksell International.

OMS. (2013). Estrategia de la OMS sobre medicina tradiciona 2014-2023. Obtenido de https://iris.who.int/bitstream/handle/10665/95008/9789243506098_spa.pdf

OPS. (2022). Directrices de la OMS sobre intervenciones de autocuidado para la. Washington. Obtenido de https://doi.org/10.37774/9789275326275

Ortíz, A. e. (2003). Estudio de poblaciones ocultas y de difícil acceso. En Varios, Metodología para la elaboración de estudios epidemiológicos a nivel nacional y local y estudios para grupos especiales relacionados con las adicciones. (págs. 101-112). México: Observatorio Epidemiológico en México. Obtenido de https://www.researchgate.net/profile/Jorge-Villatoro-Velazquez/publication/277587690_Estudio_de_poblaciones_ocultas_y_de_dificil_acceso/links/556dd0b008aeccd7773f3c23/Estudio-de-poblaciones-ocultas-y-de-dificil-acceso.pdf

Oxford Insights. (2023). AI for Climate Change: Using artificial and indigenous Intelligence to fight climate change. Obtenido de https://oxfordinsights.com/insights/ai-indigenous-intelligence/

Pasikowski, S. (2023). Snowball Sampling and Its Non-Trivial Nature. Przegląd Badań Edukacyjnych Educational Studies Review, 105-120.

https://doi.org/10.12775/PBE.2023.030

Peredo Albornoz, G., & Prado Mendoza, C. (2024). Sistema Tukuypaq. Aportes de la medicina tradicional para el abordaje integral de epidemias o pandemias. Revista de Investigación e Información en Salud, 94-108. https://doi.org/10.52428/20756208.v19i47.1218

Peredo, G. (2020). Estudio de la fragmentación de líneas temporales y los estados prolongados de confusión para el análisis de la existencia-consciencia humana del siglo XXI. En Comuniteca, Diálogos de pandemia: Aportes y desafíos de la comunicación en tiempos de Covid-19 (págs. 107-111).

Pérez, R. (2019). Aplicación móvil para la preservación de las lenguas originarias de México aplicando Inteligencia Artificial. CIERMMI Mujeres en la ciencia(1), 75-96. https://doi.org/10.35429/H.2019.1.75.96

Poulose, N. (2021). Fake News in Health and Medicine. En Data Science for Fake News. The Information Retrieval Series. Springer.

https://doi.org/10.1007/978-3-030-62696-9

PMid:34384074

Prado Mendoza, C. (2016). Mancharisqa no es depresión. Aporte etnomédico para la salud mental intercultural. Cochabamba: No identificada. Obtenido de https://searchworks.stanford.edu/view/11879402

Prado, C. (2023). Memoria de Medicina Tradicional Andino Amazónica. 1000 Maneras de Prevenir y Curar Enfermedade. Centro Cultural Kuska de Sabidurías Ancestrales. Qinti Studios.

Redvers, N. e. (2024). Indigenous Elders' voices on health-systems change informed by planetary health: a qualitative and relational systems mapping inquiry. The Lancet Planetary Health, e1106-17. Obtenido de https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(24)00277-8/fulltext

https://doi.org/10.1016/S2542-5196(24)00277-8

PMid:39674198

Rojas, J. (2014). Vigilancia de la comunicaiones en la era digital - reporte Bolivia. Global Informatio Society Watch, Fundacion REDES para el Desarrollo Sostenible.

Rösing, I. (1995). Dialogos con divinidades de cerros, rayos, manantiales y lagos: oraciones blancas Kallawayas. Hisbol.

Ruíz Méndez, M. d., & Aguirre Aguilar, G. (2015). Etnografía virtual, un acercamiento al método y a sus aplicaciones. Estudios sobre las Culturas Contemporáneas, 67-96. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=5175390

Sakur, F. e. (2022). Self-care Behaviors and Technology Used During COVID-19: Systematic Review. JMIR Human Factors, e35173.

https://doi.org/10.2196/35173

PMid:35442904 PMCid:PMC9217152

Sassi, S., & al., e. (2022). Collective intelligence and knowledge exploration: an introduction. International Journal of Data Science and Analytics, 99-111. https://doi.org/10.1007/s41060-022-00338-9

PMid:35730041 PMCid:PMC9205147

Sørensen, V., & Lansing, J. S. (2023). Art, technology and the Internet of Living Things. AI & Society, 2401-2417.

https://doi.org/10.1007/s00146-023-01667-4

PMid:37358942 PMCid:PMC10187521

Subbiah, V. (2023). The next generation of evidence-based medicine. Nature Medicine, 49-58. https://doi.org/10.1038/s41591-022-02160-z

PMid:36646803

Torres-Soto, N. Y. (2022). The relationship between self-care, positive family environment, and human wellbeing. Wellbeing, Space and Society, 100076. doi:https://doi.org/10.1016/j.wss.2022.100076

UIT. (2023). Obtenido de AI for Good: https://aiforgood.itu.int/about-ai-for-good/

UIT. (2023). Focus Group on "Artificial Intelligence for Health". Obtenido de https://www.itu.int/en/ITU-T/focusgroups/ai4h/Pages/default.aspx

Vanderbroek, I. (2003). Plantas medicinales para la atención primaria de la salud. El conocimiento de ocho médicos tradicionales de Apillapampa (Bolivia). Cochabamba: Industrias Gráficas Serrano.

Venkatesmarlu, V., & al., e. (2024). The Future of Healthcare: Using AI and IoT to Drive Data Driven Revolution. En S. Kant Gupta, D. A. Karras, & R. (. Natarajan, Revolutionizing Healthcare: AI Integration with IoT for Enhanced Patient Outcomes (págs. 169-183). Non identified: Springer, Cham. https://doi.org/10.1007/978-3-031-65022-2_9

Walker, M. (2023). Digital Health: How modern technology is changing medicine and.

White, J. B. (2024). Consilience and AI as technological prostheses. AI & Society, 2179-2181. Obtenido de https://philarchive.org/rec/WHICAA-6

https://doi.org/10.1007/s00146-024-02048-1

WHO. (2021). Global strategy on digital health 2020-2025. Obtenido de https://www.who.int/docs/default-source/documents/gs4dhdaa2a9f352b0445bafbc79ca799dce4d.pdf

WHO. (2024). Implementation of self-care interventions for health and well-being. Guidance for health systems.

Wilson, E. O. (1999). Consilience. The Unity of KNowledge. Vintage Books.

Wu, C. e. (2022). Artificial Intelligence in Traditional Medicine. Frontiers in Pharmacology, 1-2. https://doi.org/10.3389/fphar.2022.933133

PMid:35991902 PMCid:PMC9386475

Yunkaporta, T. (2019). Sand Talk. How Indigenous Thinking can Save the World. Melbourn, Australia: Text Publishing

Published

25-12-2024

How to Cite

Caballero Medina, N., Prado Mendoza, C., & Peredo Albornoz, G. (2024). Operation criteria for Artificial Intelligence in the use of traditional medicine for self-care in health. Journal Boliviano De Ciencias, 20(56), 15–37. https://doi.org/10.52428/20758944.v20i56.1209